A Tensor Approach to the Mesh Resistance Matrix

This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2011-11, Vol.26 (4), p.1989-1997
1. Verfasser: Uriarte, F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1997
container_issue 4
container_start_page 1989
container_title IEEE transactions on power systems
container_volume 26
creator Uriarte, F. M.
description This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.
doi_str_mv 10.1109/TPWRS.2011.2142201
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_900057721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5768048</ieee_id><sourcerecordid>1328509957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</originalsourceid><addsrcrecordid>eNpdkE9PAjEQxRujiYh-Ab1sPHlZnOlS2h4J8V-C0SDGY1PKbFgCu9guiX57ByEePM2b9vea1yfEJUIPEezt9PVj8taTgNiT2JcsjkQHlTI5DLQ9Fh0wRuXGKjgVZyktAWDAFx1xO8ymVKcmZsPNJjY-LLK2ydoFZc-UFtmEUpVaXwfefRurr3NxUvpVoovD7Ir3-7vp6DEfvzw8jYbjPBRSt7mfW01gUapZHyQozhh0WRa-pMAaZwiMIMzJektYyLkMM6aUKvnI2qIrbvbvcqjPLaXWrasUaLXyNTXb5NhiFFirNKPX_9Bls401p3OW_6m0lsiQ3EMhNilFKt0mVmsfvx2C21Xofit0uwrdoUI2Xe1NFRH9GZQeGOib4gfROWq7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900057721</pqid></control><display><type>article</type><title>A Tensor Approach to the Mesh Resistance Matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Uriarte, F. M.</creator><creatorcontrib>Uriarte, F. M.</creatorcontrib><description>This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2011.2142201</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conferences ; Electromagnetic transients program (EMTP) ; EMTP ; graph ; Graph theory ; impedance ; Kron ; loop ; Mathematical analysis ; Matrices ; matrix ; Matrix methods ; mesh ; modified nodal analysis (MNA) ; nodal ; Numerical analysis ; power ; Power system simulation ; Resistance ; Searching ; simulation ; sparse ; Sparse matrices ; Studies ; system ; tensor ; Tensors ; Terminals ; transient</subject><ispartof>IEEE transactions on power systems, 2011-11, Vol.26 (4), p.1989-1997</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</citedby><cites>FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5768048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5768048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Uriarte, F. M.</creatorcontrib><title>A Tensor Approach to the Mesh Resistance Matrix</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.</description><subject>Conferences</subject><subject>Electromagnetic transients program (EMTP)</subject><subject>EMTP</subject><subject>graph</subject><subject>Graph theory</subject><subject>impedance</subject><subject>Kron</subject><subject>loop</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>matrix</subject><subject>Matrix methods</subject><subject>mesh</subject><subject>modified nodal analysis (MNA)</subject><subject>nodal</subject><subject>Numerical analysis</subject><subject>power</subject><subject>Power system simulation</subject><subject>Resistance</subject><subject>Searching</subject><subject>simulation</subject><subject>sparse</subject><subject>Sparse matrices</subject><subject>Studies</subject><subject>system</subject><subject>tensor</subject><subject>Tensors</subject><subject>Terminals</subject><subject>transient</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9PAjEQxRujiYh-Ab1sPHlZnOlS2h4J8V-C0SDGY1PKbFgCu9guiX57ByEePM2b9vea1yfEJUIPEezt9PVj8taTgNiT2JcsjkQHlTI5DLQ9Fh0wRuXGKjgVZyktAWDAFx1xO8ymVKcmZsPNJjY-LLK2ydoFZc-UFtmEUpVaXwfefRurr3NxUvpVoovD7Ir3-7vp6DEfvzw8jYbjPBRSt7mfW01gUapZHyQozhh0WRa-pMAaZwiMIMzJektYyLkMM6aUKvnI2qIrbvbvcqjPLaXWrasUaLXyNTXb5NhiFFirNKPX_9Bls401p3OW_6m0lsiQ3EMhNilFKt0mVmsfvx2C21Xofit0uwrdoUI2Xe1NFRH9GZQeGOib4gfROWq7</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Uriarte, F. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201111</creationdate><title>A Tensor Approach to the Mesh Resistance Matrix</title><author>Uriarte, F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>Electromagnetic transients program (EMTP)</topic><topic>EMTP</topic><topic>graph</topic><topic>Graph theory</topic><topic>impedance</topic><topic>Kron</topic><topic>loop</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>matrix</topic><topic>Matrix methods</topic><topic>mesh</topic><topic>modified nodal analysis (MNA)</topic><topic>nodal</topic><topic>Numerical analysis</topic><topic>power</topic><topic>Power system simulation</topic><topic>Resistance</topic><topic>Searching</topic><topic>simulation</topic><topic>sparse</topic><topic>Sparse matrices</topic><topic>Studies</topic><topic>system</topic><topic>tensor</topic><topic>Tensors</topic><topic>Terminals</topic><topic>transient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uriarte, F. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uriarte, F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tensor Approach to the Mesh Resistance Matrix</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-11</date><risdate>2011</risdate><volume>26</volume><issue>4</issue><spage>1989</spage><epage>1997</epage><pages>1989-1997</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2011.2142201</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2011-11, Vol.26 (4), p.1989-1997
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_900057721
source IEEE Electronic Library (IEL)
subjects Conferences
Electromagnetic transients program (EMTP)
EMTP
graph
Graph theory
impedance
Kron
loop
Mathematical analysis
Matrices
matrix
Matrix methods
mesh
modified nodal analysis (MNA)
nodal
Numerical analysis
power
Power system simulation
Resistance
Searching
simulation
sparse
Sparse matrices
Studies
system
tensor
Tensors
Terminals
transient
title A Tensor Approach to the Mesh Resistance Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tensor%20Approach%20to%20the%20Mesh%20Resistance%20Matrix&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Uriarte,%20F.%20M.&rft.date=2011-11&rft.volume=26&rft.issue=4&rft.spage=1989&rft.epage=1997&rft.pages=1989-1997&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2011.2142201&rft_dat=%3Cproquest_RIE%3E1328509957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900057721&rft_id=info:pmid/&rft_ieee_id=5768048&rfr_iscdi=true