A Tensor Approach to the Mesh Resistance Matrix
This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is tim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2011-11, Vol.26 (4), p.1989-1997 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1997 |
---|---|
container_issue | 4 |
container_start_page | 1989 |
container_title | IEEE transactions on power systems |
container_volume | 26 |
creator | Uriarte, F. M. |
description | This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible. |
doi_str_mv | 10.1109/TPWRS.2011.2142201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_900057721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5768048</ieee_id><sourcerecordid>1328509957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</originalsourceid><addsrcrecordid>eNpdkE9PAjEQxRujiYh-Ab1sPHlZnOlS2h4J8V-C0SDGY1PKbFgCu9guiX57ByEePM2b9vea1yfEJUIPEezt9PVj8taTgNiT2JcsjkQHlTI5DLQ9Fh0wRuXGKjgVZyktAWDAFx1xO8ymVKcmZsPNJjY-LLK2ydoFZc-UFtmEUpVaXwfefRurr3NxUvpVoovD7Ir3-7vp6DEfvzw8jYbjPBRSt7mfW01gUapZHyQozhh0WRa-pMAaZwiMIMzJektYyLkMM6aUKvnI2qIrbvbvcqjPLaXWrasUaLXyNTXb5NhiFFirNKPX_9Bls401p3OW_6m0lsiQ3EMhNilFKt0mVmsfvx2C21Xofit0uwrdoUI2Xe1NFRH9GZQeGOib4gfROWq7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900057721</pqid></control><display><type>article</type><title>A Tensor Approach to the Mesh Resistance Matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Uriarte, F. M.</creator><creatorcontrib>Uriarte, F. M.</creatorcontrib><description>This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2011.2142201</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conferences ; Electromagnetic transients program (EMTP) ; EMTP ; graph ; Graph theory ; impedance ; Kron ; loop ; Mathematical analysis ; Matrices ; matrix ; Matrix methods ; mesh ; modified nodal analysis (MNA) ; nodal ; Numerical analysis ; power ; Power system simulation ; Resistance ; Searching ; simulation ; sparse ; Sparse matrices ; Studies ; system ; tensor ; Tensors ; Terminals ; transient</subject><ispartof>IEEE transactions on power systems, 2011-11, Vol.26 (4), p.1989-1997</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</citedby><cites>FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5768048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5768048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Uriarte, F. M.</creatorcontrib><title>A Tensor Approach to the Mesh Resistance Matrix</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.</description><subject>Conferences</subject><subject>Electromagnetic transients program (EMTP)</subject><subject>EMTP</subject><subject>graph</subject><subject>Graph theory</subject><subject>impedance</subject><subject>Kron</subject><subject>loop</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>matrix</subject><subject>Matrix methods</subject><subject>mesh</subject><subject>modified nodal analysis (MNA)</subject><subject>nodal</subject><subject>Numerical analysis</subject><subject>power</subject><subject>Power system simulation</subject><subject>Resistance</subject><subject>Searching</subject><subject>simulation</subject><subject>sparse</subject><subject>Sparse matrices</subject><subject>Studies</subject><subject>system</subject><subject>tensor</subject><subject>Tensors</subject><subject>Terminals</subject><subject>transient</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9PAjEQxRujiYh-Ab1sPHlZnOlS2h4J8V-C0SDGY1PKbFgCu9guiX57ByEePM2b9vea1yfEJUIPEezt9PVj8taTgNiT2JcsjkQHlTI5DLQ9Fh0wRuXGKjgVZyktAWDAFx1xO8ymVKcmZsPNJjY-LLK2ydoFZc-UFtmEUpVaXwfefRurr3NxUvpVoovD7Ir3-7vp6DEfvzw8jYbjPBRSt7mfW01gUapZHyQozhh0WRa-pMAaZwiMIMzJektYyLkMM6aUKvnI2qIrbvbvcqjPLaXWrasUaLXyNTXb5NhiFFirNKPX_9Bls401p3OW_6m0lsiQ3EMhNilFKt0mVmsfvx2C21Xofit0uwrdoUI2Xe1NFRH9GZQeGOib4gfROWq7</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Uriarte, F. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201111</creationdate><title>A Tensor Approach to the Mesh Resistance Matrix</title><author>Uriarte, F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ad97e09125b40205109c7ff3afec1091b10ad910de9a9e132d2cb51055fde9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>Electromagnetic transients program (EMTP)</topic><topic>EMTP</topic><topic>graph</topic><topic>Graph theory</topic><topic>impedance</topic><topic>Kron</topic><topic>loop</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>matrix</topic><topic>Matrix methods</topic><topic>mesh</topic><topic>modified nodal analysis (MNA)</topic><topic>nodal</topic><topic>Numerical analysis</topic><topic>power</topic><topic>Power system simulation</topic><topic>Resistance</topic><topic>Searching</topic><topic>simulation</topic><topic>sparse</topic><topic>Sparse matrices</topic><topic>Studies</topic><topic>system</topic><topic>tensor</topic><topic>Tensors</topic><topic>Terminals</topic><topic>transient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uriarte, F. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uriarte, F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tensor Approach to the Mesh Resistance Matrix</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-11</date><risdate>2011</risdate><volume>26</volume><issue>4</issue><spage>1989</spage><epage>1997</epage><pages>1989-1997</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a tensor approach to obtain the mesh resistance matrix of a power system. The traditional approach to the mesh matrices naturally relates to graph theory, where the fundamental loops of a representative graph are found from a spanning tree. While valid, mesh identification is time consuming, involves unnecessary programming overhead, yields dense mesh matrices, and requires developing good search heuristics. The proposed approach uses a connection tensor to form a sparse mesh resistance matrix without resorting to graph theory. It allows for the interconnection of only those meshes circulating around the terminals of each power apparatus, which is more effective than searching for the meshes of an entire power system. Detailed steps to form the tensor and supporting examples illustrate the procedure presented in several scenarios. It is also shown that the mesh resistance matrix is sparse and that the computational effort to form the tensor is negligible.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2011.2142201</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2011-11, Vol.26 (4), p.1989-1997 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_900057721 |
source | IEEE Electronic Library (IEL) |
subjects | Conferences Electromagnetic transients program (EMTP) EMTP graph Graph theory impedance Kron loop Mathematical analysis Matrices matrix Matrix methods mesh modified nodal analysis (MNA) nodal Numerical analysis power Power system simulation Resistance Searching simulation sparse Sparse matrices Studies system tensor Tensors Terminals transient |
title | A Tensor Approach to the Mesh Resistance Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tensor%20Approach%20to%20the%20Mesh%20Resistance%20Matrix&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Uriarte,%20F.%20M.&rft.date=2011-11&rft.volume=26&rft.issue=4&rft.spage=1989&rft.epage=1997&rft.pages=1989-1997&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2011.2142201&rft_dat=%3Cproquest_RIE%3E1328509957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900057721&rft_id=info:pmid/&rft_ieee_id=5768048&rfr_iscdi=true |