A mechanistic model for understanding invasions: using the environment as a predictor of population success

Aim We set out to develop a temperature- and salinity-dependent mechanistic population model for copepods that can be used to understand the role of environmental parameters in population growth or decline. Models are an important tool for understanding the dynamics of invasive species; our model ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diversity & distributions 2011-11, Vol.17 (6), p.1210-1224
Hauptverfasser: Strasser, Carly A., Lewis, Mark A., DiBacco, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1224
container_issue 6
container_start_page 1210
container_title Diversity & distributions
container_volume 17
creator Strasser, Carly A.
Lewis, Mark A.
DiBacco, Claudio
description Aim We set out to develop a temperature- and salinity-dependent mechanistic population model for copepods that can be used to understand the role of environmental parameters in population growth or decline. Models are an important tool for understanding the dynamics of invasive species; our model can be used to determine an organism's niche and explore the potential for invasion of a new habitat. Location Strait of Georgia, British Columbia, Canada. Methods We developed a birth rate model to determine the environmental niche for an estuarine copepod. We conducted laboratory experiments to estimate demographic parameters over a range of temperatures and salinities for Eurytemora affinis collected from the Nanaimo Estuary, British Columbia (BC). The parameterized model was then used to explore what environmental conditions resulted in population growth vs. decline. We then re-parameterized our model using previously published data for E. affinis collected in the Seine Estuary, France (SE), and compared the dynamics of the two populations. Results We established regions in temperature-salinity space where E. affinis populations from BC would likely grow vs. decline. In general, the population from BC exhibited positive and higher intrinsic growth rates at higher temperatures and salinities. The population from SE exhibited positive and higher growth rates with increasing temperature and decreasing salinity. These different relationships with environmental parameters resulted in predictions of complex interactions among temperature, salinity and growth rates if the two subspecies inhabited the same estuary. Main conclusions We developed a new mechanistic model that describes population dynamics in terms of temperature and salinity. This model may prove especially useful in predicting the potential for invasion by copepods transported to Pacific north-west estuaries via ballast water, or in any system where an ecosystem is subject to invasion by a species that shares demographic characteristics with an established (sub) species.
doi_str_mv 10.1111/j.1472-4642.2011.00791.x
format Article
fullrecord <record><control><sourceid>jstor_24P</sourceid><recordid>TN_cdi_proquest_journals_898300991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242857</jstor_id><sourcerecordid>41242857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3801-42824dab8ace6a0c2bc7965d16d46c7e3852afe77e3df9f8c063c97560e6f9c43</originalsourceid><addsrcrecordid>eNo9kF9L5DAUxcviwqrrR1gIgo-t-Z9GfBFHR2FUBN19DDFN19ROWpN2HL-9qTPMfbmXnHPuJb8sAwgWKNVpUyAqcE45xQWGCBUQComK9Y9sfyfspZlwnkuG-K_sIMYGQkgIw_vZ2wVYWvOqvYuDM2DZVbYFdRfA6Csb4qB95fx_4PxKR9f5eAbGOD0MrxZYv3Kh80vrB6Aj0KAPtnJmSOmuBn3Xj60eUgjE0Rgb4-_sZ63baI-2_TB7vr56urzJFw_z28uLRW5ICVFOcYlppV9KbSzX0OAXIyRnFeIV5UZYUjKsayvSVNWyLg3kxEjBOLS8loaSw-x4s7cP3fto46Cabgw-nVSlLAmEUqJkOtmadDS6rYP2xkXVB7fU4VNhyoRkjCXf-cb34Vr7udMRVBN-1aiJspooqwm_-sav1mo2uxXfZ_5s4k1MXHZxinD6JhNJzzd64m_XO12HN8UFEUz9u5-rx3v4V8ye7tScfAGHaJUF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898300991</pqid></control><display><type>article</type><title>A mechanistic model for understanding invasions: using the environment as a predictor of population success</title><source>Wiley Online Library Open Access</source><creator>Strasser, Carly A. ; Lewis, Mark A. ; DiBacco, Claudio</creator><creatorcontrib>Strasser, Carly A. ; Lewis, Mark A. ; DiBacco, Claudio</creatorcontrib><description>Aim We set out to develop a temperature- and salinity-dependent mechanistic population model for copepods that can be used to understand the role of environmental parameters in population growth or decline. Models are an important tool for understanding the dynamics of invasive species; our model can be used to determine an organism's niche and explore the potential for invasion of a new habitat. Location Strait of Georgia, British Columbia, Canada. Methods We developed a birth rate model to determine the environmental niche for an estuarine copepod. We conducted laboratory experiments to estimate demographic parameters over a range of temperatures and salinities for Eurytemora affinis collected from the Nanaimo Estuary, British Columbia (BC). The parameterized model was then used to explore what environmental conditions resulted in population growth vs. decline. We then re-parameterized our model using previously published data for E. affinis collected in the Seine Estuary, France (SE), and compared the dynamics of the two populations. Results We established regions in temperature-salinity space where E. affinis populations from BC would likely grow vs. decline. In general, the population from BC exhibited positive and higher intrinsic growth rates at higher temperatures and salinities. The population from SE exhibited positive and higher growth rates with increasing temperature and decreasing salinity. These different relationships with environmental parameters resulted in predictions of complex interactions among temperature, salinity and growth rates if the two subspecies inhabited the same estuary. Main conclusions We developed a new mechanistic model that describes population dynamics in terms of temperature and salinity. This model may prove especially useful in predicting the potential for invasion by copepods transported to Pacific north-west estuaries via ballast water, or in any system where an ecosystem is subject to invasion by a species that shares demographic characteristics with an established (sub) species.</description><identifier>ISSN: 1366-9516</identifier><identifier>EISSN: 1472-4642</identifier><identifier>DOI: 10.1111/j.1472-4642.2011.00791.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Ballast water ; BIODIVERSITY RESEARCH ; Biological and medical sciences ; Biological invasions ; Copepoda ; Crustacea ; Ecological invasion ; Ecological modeling ; Estuaries ; estuarine ; Eurytemora affinis ; Fundamental and applied biological sciences. Psychology ; General aspects ; Invasive species ; Invertebrates ; Mathematical models ; Mechanical properties ; mechanistic model ; Modeling ; Mortality ; population dynamics ; Population estimates ; Population growth ; Population growth rate ; Salinity</subject><ispartof>Diversity &amp; distributions, 2011-11, Vol.17 (6), p.1210-1224</ispartof><rights>Copyright © 2011 Blackwell Publishing Ltd.</rights><rights>2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3801-42824dab8ace6a0c2bc7965d16d46c7e3852afe77e3df9f8c063c97560e6f9c43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,11543,27903,27904,45553,45554,46030,46454,57995,58228</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1472-4642.2011.00791.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24579555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strasser, Carly A.</creatorcontrib><creatorcontrib>Lewis, Mark A.</creatorcontrib><creatorcontrib>DiBacco, Claudio</creatorcontrib><title>A mechanistic model for understanding invasions: using the environment as a predictor of population success</title><title>Diversity &amp; distributions</title><description>Aim We set out to develop a temperature- and salinity-dependent mechanistic population model for copepods that can be used to understand the role of environmental parameters in population growth or decline. Models are an important tool for understanding the dynamics of invasive species; our model can be used to determine an organism's niche and explore the potential for invasion of a new habitat. Location Strait of Georgia, British Columbia, Canada. Methods We developed a birth rate model to determine the environmental niche for an estuarine copepod. We conducted laboratory experiments to estimate demographic parameters over a range of temperatures and salinities for Eurytemora affinis collected from the Nanaimo Estuary, British Columbia (BC). The parameterized model was then used to explore what environmental conditions resulted in population growth vs. decline. We then re-parameterized our model using previously published data for E. affinis collected in the Seine Estuary, France (SE), and compared the dynamics of the two populations. Results We established regions in temperature-salinity space where E. affinis populations from BC would likely grow vs. decline. In general, the population from BC exhibited positive and higher intrinsic growth rates at higher temperatures and salinities. The population from SE exhibited positive and higher growth rates with increasing temperature and decreasing salinity. These different relationships with environmental parameters resulted in predictions of complex interactions among temperature, salinity and growth rates if the two subspecies inhabited the same estuary. Main conclusions We developed a new mechanistic model that describes population dynamics in terms of temperature and salinity. This model may prove especially useful in predicting the potential for invasion by copepods transported to Pacific north-west estuaries via ballast water, or in any system where an ecosystem is subject to invasion by a species that shares demographic characteristics with an established (sub) species.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Ballast water</subject><subject>BIODIVERSITY RESEARCH</subject><subject>Biological and medical sciences</subject><subject>Biological invasions</subject><subject>Copepoda</subject><subject>Crustacea</subject><subject>Ecological invasion</subject><subject>Ecological modeling</subject><subject>Estuaries</subject><subject>estuarine</subject><subject>Eurytemora affinis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Invasive species</subject><subject>Invertebrates</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>mechanistic model</subject><subject>Modeling</subject><subject>Mortality</subject><subject>population dynamics</subject><subject>Population estimates</subject><subject>Population growth</subject><subject>Population growth rate</subject><subject>Salinity</subject><issn>1366-9516</issn><issn>1472-4642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kF9L5DAUxcviwqrrR1gIgo-t-Z9GfBFHR2FUBN19DDFN19ROWpN2HL-9qTPMfbmXnHPuJb8sAwgWKNVpUyAqcE45xQWGCBUQComK9Y9sfyfspZlwnkuG-K_sIMYGQkgIw_vZ2wVYWvOqvYuDM2DZVbYFdRfA6Csb4qB95fx_4PxKR9f5eAbGOD0MrxZYv3Kh80vrB6Aj0KAPtnJmSOmuBn3Xj60eUgjE0Rgb4-_sZ63baI-2_TB7vr56urzJFw_z28uLRW5ICVFOcYlppV9KbSzX0OAXIyRnFeIV5UZYUjKsayvSVNWyLg3kxEjBOLS8loaSw-x4s7cP3fto46Cabgw-nVSlLAmEUqJkOtmadDS6rYP2xkXVB7fU4VNhyoRkjCXf-cb34Vr7udMRVBN-1aiJspooqwm_-sav1mo2uxXfZ_5s4k1MXHZxinD6JhNJzzd64m_XO12HN8UFEUz9u5-rx3v4V8ye7tScfAGHaJUF</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Strasser, Carly A.</creator><creator>Lewis, Mark A.</creator><creator>DiBacco, Claudio</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SN</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>201111</creationdate><title>A mechanistic model for understanding invasions: using the environment as a predictor of population success</title><author>Strasser, Carly A. ; Lewis, Mark A. ; DiBacco, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3801-42824dab8ace6a0c2bc7965d16d46c7e3852afe77e3df9f8c063c97560e6f9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Ballast water</topic><topic>BIODIVERSITY RESEARCH</topic><topic>Biological and medical sciences</topic><topic>Biological invasions</topic><topic>Copepoda</topic><topic>Crustacea</topic><topic>Ecological invasion</topic><topic>Ecological modeling</topic><topic>Estuaries</topic><topic>estuarine</topic><topic>Eurytemora affinis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Invasive species</topic><topic>Invertebrates</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>mechanistic model</topic><topic>Modeling</topic><topic>Mortality</topic><topic>population dynamics</topic><topic>Population estimates</topic><topic>Population growth</topic><topic>Population growth rate</topic><topic>Salinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strasser, Carly A.</creatorcontrib><creatorcontrib>Lewis, Mark A.</creatorcontrib><creatorcontrib>DiBacco, Claudio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Diversity &amp; distributions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strasser, Carly A.</au><au>Lewis, Mark A.</au><au>DiBacco, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanistic model for understanding invasions: using the environment as a predictor of population success</atitle><jtitle>Diversity &amp; distributions</jtitle><date>2011-11</date><risdate>2011</risdate><volume>17</volume><issue>6</issue><spage>1210</spage><epage>1224</epage><pages>1210-1224</pages><issn>1366-9516</issn><eissn>1472-4642</eissn><abstract>Aim We set out to develop a temperature- and salinity-dependent mechanistic population model for copepods that can be used to understand the role of environmental parameters in population growth or decline. Models are an important tool for understanding the dynamics of invasive species; our model can be used to determine an organism's niche and explore the potential for invasion of a new habitat. Location Strait of Georgia, British Columbia, Canada. Methods We developed a birth rate model to determine the environmental niche for an estuarine copepod. We conducted laboratory experiments to estimate demographic parameters over a range of temperatures and salinities for Eurytemora affinis collected from the Nanaimo Estuary, British Columbia (BC). The parameterized model was then used to explore what environmental conditions resulted in population growth vs. decline. We then re-parameterized our model using previously published data for E. affinis collected in the Seine Estuary, France (SE), and compared the dynamics of the two populations. Results We established regions in temperature-salinity space where E. affinis populations from BC would likely grow vs. decline. In general, the population from BC exhibited positive and higher intrinsic growth rates at higher temperatures and salinities. The population from SE exhibited positive and higher growth rates with increasing temperature and decreasing salinity. These different relationships with environmental parameters resulted in predictions of complex interactions among temperature, salinity and growth rates if the two subspecies inhabited the same estuary. Main conclusions We developed a new mechanistic model that describes population dynamics in terms of temperature and salinity. This model may prove especially useful in predicting the potential for invasion by copepods transported to Pacific north-west estuaries via ballast water, or in any system where an ecosystem is subject to invasion by a species that shares demographic characteristics with an established (sub) species.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1472-4642.2011.00791.x</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1366-9516
ispartof Diversity & distributions, 2011-11, Vol.17 (6), p.1210-1224
issn 1366-9516
1472-4642
language eng
recordid cdi_proquest_journals_898300991
source Wiley Online Library Open Access
subjects Animal, plant and microbial ecology
Applied ecology
Ballast water
BIODIVERSITY RESEARCH
Biological and medical sciences
Biological invasions
Copepoda
Crustacea
Ecological invasion
Ecological modeling
Estuaries
estuarine
Eurytemora affinis
Fundamental and applied biological sciences. Psychology
General aspects
Invasive species
Invertebrates
Mathematical models
Mechanical properties
mechanistic model
Modeling
Mortality
population dynamics
Population estimates
Population growth
Population growth rate
Salinity
title A mechanistic model for understanding invasions: using the environment as a predictor of population success
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanistic%20model%20for%20understanding%20invasions:%20using%20the%20environment%20as%20a%20predictor%20of%20population%20success&rft.jtitle=Diversity%20&%20distributions&rft.au=Strasser,%20Carly%20A.&rft.date=2011-11&rft.volume=17&rft.issue=6&rft.spage=1210&rft.epage=1224&rft.pages=1210-1224&rft.issn=1366-9516&rft.eissn=1472-4642&rft_id=info:doi/10.1111/j.1472-4642.2011.00791.x&rft_dat=%3Cjstor_24P%3E41242857%3C/jstor_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898300991&rft_id=info:pmid/&rft_jstor_id=41242857&rfr_iscdi=true