Increased light harvesting in dye-sensitized solar cells with energy relay dyes

Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2009-07, Vol.3 (7), p.406-411
Hauptverfasser: Hardin, Brian E., Hoke, Eric T., Armstrong, Paul B., Yum, Jun-Ho, Comte, Pascal, Torres, Tomás, Fréchet, Jean M. J., Nazeeruddin, Md Khaja, Grätzel, Michael, McGehee, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 7
container_start_page 406
container_title Nature photonics
container_volume 3
creator Hardin, Brian E.
Hoke, Eric T.
Armstrong, Paul B.
Yum, Jun-Ho
Comte, Pascal
Torres, Tomás
Fréchet, Jean M. J.
Nazeeruddin, Md Khaja
Grätzel, Michael
McGehee, Michael D.
description Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells. The power-conversion efficiency of dye-sensitized solar cells is increased by 26% by using energy relay dyes. The scheme aids the absorption of high-energy photons that undergo Förster resonant energy transfer to a sensitizing dye, and may offer a viable pathway for developing more efficient dye-sensitized solar cells.
doi_str_mv 10.1038/nphoton.2009.96
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_896545712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478061321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ae9f07adf4a53274e1893a8f8212d733c3239722de07d275dcc2f9ffff0f9f653</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtnr0HwuG0-djeboxSthUIveg4hm-ymrNma2SrrX29KSz05lxmY37w3PITuKZlRwqt52LX90IcZI0TOZHmBJlTkMssryS_Pc1VcoxuALSEFl4xN0GYVTLQabI0737QDbnX8sjD40GAfcD3aDGwAP_ifhEDf6YiN7TrA335osQ02NiOOttPjAYZbdOV0B_bu1Kfo_eX5bfGarTfL1eJpnRnO5ZBpKx0Runa5LjgTuaXpTV25ilFWC84NZ1wKxmpLRM1EURvDnHSpSGplwafo4ai7i_3nPj2stv0-hmSpKlkWeSEoS9D8CJnYA0Tr1C76Dx1HRYk6hKZOoalDaEqW6eLxJKvB6M5FHYyH8xmjZZUyJIkjRw7SKjQ2_tn_J_0LzqR_9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896545712</pqid></control><display><type>article</type><title>Increased light harvesting in dye-sensitized solar cells with energy relay dyes</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink</source><creator>Hardin, Brian E. ; Hoke, Eric T. ; Armstrong, Paul B. ; Yum, Jun-Ho ; Comte, Pascal ; Torres, Tomás ; Fréchet, Jean M. J. ; Nazeeruddin, Md Khaja ; Grätzel, Michael ; McGehee, Michael D.</creator><creatorcontrib>Hardin, Brian E. ; Hoke, Eric T. ; Armstrong, Paul B. ; Yum, Jun-Ho ; Comte, Pascal ; Torres, Tomás ; Fréchet, Jean M. J. ; Nazeeruddin, Md Khaja ; Grätzel, Michael ; McGehee, Michael D.</creatorcontrib><description>Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells. The power-conversion efficiency of dye-sensitized solar cells is increased by 26% by using energy relay dyes. The scheme aids the absorption of high-energy photons that undergo Förster resonant energy transfer to a sensitizing dye, and may offer a viable pathway for developing more efficient dye-sensitized solar cells.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2009.96</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied and Technical Physics ; Applied sciences ; Dyes ; Electrolytes ; Energy ; Energy transfer ; Exact sciences and technology ; Light ; Natural energy ; Photonics ; Photovoltaic cells ; Photovoltaic conversion ; Photovoltaics ; Physics ; Physics and Astronomy ; Quantum Physics ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Nature photonics, 2009-07, Vol.3 (7), p.406-411</ispartof><rights>Springer Nature Limited 2009</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ae9f07adf4a53274e1893a8f8212d733c3239722de07d275dcc2f9ffff0f9f653</citedby><cites>FETCH-LOGICAL-c339t-ae9f07adf4a53274e1893a8f8212d733c3239722de07d275dcc2f9ffff0f9f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2009.96$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2009.96$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21688850$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hardin, Brian E.</creatorcontrib><creatorcontrib>Hoke, Eric T.</creatorcontrib><creatorcontrib>Armstrong, Paul B.</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Comte, Pascal</creatorcontrib><creatorcontrib>Torres, Tomás</creatorcontrib><creatorcontrib>Fréchet, Jean M. J.</creatorcontrib><creatorcontrib>Nazeeruddin, Md Khaja</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><title>Increased light harvesting in dye-sensitized solar cells with energy relay dyes</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells. The power-conversion efficiency of dye-sensitized solar cells is increased by 26% by using energy relay dyes. The scheme aids the absorption of high-energy photons that undergo Förster resonant energy transfer to a sensitizing dye, and may offer a viable pathway for developing more efficient dye-sensitized solar cells.</description><subject>Applied and Technical Physics</subject><subject>Applied sciences</subject><subject>Dyes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Exact sciences and technology</subject><subject>Light</subject><subject>Natural energy</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKtnr0HwuG0-djeboxSthUIveg4hm-ymrNma2SrrX29KSz05lxmY37w3PITuKZlRwqt52LX90IcZI0TOZHmBJlTkMssryS_Pc1VcoxuALSEFl4xN0GYVTLQabI0737QDbnX8sjD40GAfcD3aDGwAP_ifhEDf6YiN7TrA335osQ02NiOOttPjAYZbdOV0B_bu1Kfo_eX5bfGarTfL1eJpnRnO5ZBpKx0Runa5LjgTuaXpTV25ilFWC84NZ1wKxmpLRM1EURvDnHSpSGplwafo4ai7i_3nPj2stv0-hmSpKlkWeSEoS9D8CJnYA0Tr1C76Dx1HRYk6hKZOoalDaEqW6eLxJKvB6M5FHYyH8xmjZZUyJIkjRw7SKjQ2_tn_J_0LzqR_9A</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hardin, Brian E.</creator><creator>Hoke, Eric T.</creator><creator>Armstrong, Paul B.</creator><creator>Yum, Jun-Ho</creator><creator>Comte, Pascal</creator><creator>Torres, Tomás</creator><creator>Fréchet, Jean M. J.</creator><creator>Nazeeruddin, Md Khaja</creator><creator>Grätzel, Michael</creator><creator>McGehee, Michael D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20090701</creationdate><title>Increased light harvesting in dye-sensitized solar cells with energy relay dyes</title><author>Hardin, Brian E. ; Hoke, Eric T. ; Armstrong, Paul B. ; Yum, Jun-Ho ; Comte, Pascal ; Torres, Tomás ; Fréchet, Jean M. J. ; Nazeeruddin, Md Khaja ; Grätzel, Michael ; McGehee, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ae9f07adf4a53274e1893a8f8212d733c3239722de07d275dcc2f9ffff0f9f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied and Technical Physics</topic><topic>Applied sciences</topic><topic>Dyes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Exact sciences and technology</topic><topic>Light</topic><topic>Natural energy</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardin, Brian E.</creatorcontrib><creatorcontrib>Hoke, Eric T.</creatorcontrib><creatorcontrib>Armstrong, Paul B.</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Comte, Pascal</creatorcontrib><creatorcontrib>Torres, Tomás</creatorcontrib><creatorcontrib>Fréchet, Jean M. J.</creatorcontrib><creatorcontrib>Nazeeruddin, Md Khaja</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardin, Brian E.</au><au>Hoke, Eric T.</au><au>Armstrong, Paul B.</au><au>Yum, Jun-Ho</au><au>Comte, Pascal</au><au>Torres, Tomás</au><au>Fréchet, Jean M. J.</au><au>Nazeeruddin, Md Khaja</au><au>Grätzel, Michael</au><au>McGehee, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased light harvesting in dye-sensitized solar cells with energy relay dyes</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>3</volume><issue>7</issue><spage>406</spage><epage>411</epage><pages>406-411</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells. The power-conversion efficiency of dye-sensitized solar cells is increased by 26% by using energy relay dyes. The scheme aids the absorption of high-energy photons that undergo Förster resonant energy transfer to a sensitizing dye, and may offer a viable pathway for developing more efficient dye-sensitized solar cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2009.96</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2009-07, Vol.3 (7), p.406-411
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_896545712
source Springer Nature - Connect here FIRST to enable access; SpringerLink
subjects Applied and Technical Physics
Applied sciences
Dyes
Electrolytes
Energy
Energy transfer
Exact sciences and technology
Light
Natural energy
Photonics
Photovoltaic cells
Photovoltaic conversion
Photovoltaics
Physics
Physics and Astronomy
Quantum Physics
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
title Increased light harvesting in dye-sensitized solar cells with energy relay dyes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20light%20harvesting%20in%20dye-sensitized%20solar%20cells%20with%20energy%20relay%20dyes&rft.jtitle=Nature%20photonics&rft.au=Hardin,%20Brian%20E.&rft.date=2009-07-01&rft.volume=3&rft.issue=7&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2009.96&rft_dat=%3Cproquest_cross%3E2478061321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896545712&rft_id=info:pmid/&rfr_iscdi=true