Silicon nanostructure cloak operating at optical frequencies

The ability to render objects invisible using a cloak (such that they are not detectable by an external observer) has long been a tantalizing goal 1 , 2 , 3 , 4 , 5 , 6 . Here, we demonstrate a cloak operating in the near infrared at a wavelength of 1,550 nm. The cloak conceals a deformation on a fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2009-08, Vol.3 (8), p.461-463
Hauptverfasser: Gabrielli, Lucas H., Cardenas, Jaime, Poitras, Carl B., Lipson, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 8
container_start_page 461
container_title Nature photonics
container_volume 3
creator Gabrielli, Lucas H.
Cardenas, Jaime
Poitras, Carl B.
Lipson, Michal
description The ability to render objects invisible using a cloak (such that they are not detectable by an external observer) has long been a tantalizing goal 1 , 2 , 3 , 4 , 5 , 6 . Here, we demonstrate a cloak operating in the near infrared at a wavelength of 1,550 nm. The cloak conceals a deformation on a flat reflecting surface, under which an object can be hidden. The device has an area of 225 µm 2 and hides a region of 1.6 µm 2 . It is composed of nanometre-size silicon structures with spatially varying densities across the cloak. The density variation is defined using transformation optics to define the effective index distribution of the cloak. A triangular array of silicon nanostructures is experimentally demonstrated to function as an optical cloaking device, operating in the near-infrared at a wavelength of 1550 nm. This approach could, in principle, be extended to larger areas using fabrication techniques such as nanoimprinting.
doi_str_mv 10.1038/nphoton.2009.117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_896545676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478061181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-79be1e9d6bd7ffad75537f02a0830e2f2d0ecac77cc449e52ccb7151a5cdcaba3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMLOGCExpvgRx7HEgipeUiUGYLaci11Sgh1sZ-Df46pVmZjuTvc99H0IXRK8IJg1N2788Mm7BcVYLggRR2hGRCXLqpHs-LA3_BSdxbjBmDNJ6QzdvvZDD94VTjsfU5ggTcEUMHj9WfjRBJ16ty50ykfqQQ-FDeZ7Mg56E8_RidVDNBf7OUfvD_dvy6dy9fL4vLxblcCaKpVCtoYY2dVtJ6zVneCcCYupxg3DhlraYQMahACoKmk4BWgF4URz6EC3ms3R1U53DD57x6Q2fgouW6pG1rzitagzCO9AEHyMwVg1hv5Lhx9FsNpWpPYVqW1FKleUKdd7XR1zNBt0jhUPPEoagmVNM47scDG_3NqEP_9_tX8BuDJ69A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896545676</pqid></control><display><type>article</type><title>Silicon nanostructure cloak operating at optical frequencies</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gabrielli, Lucas H. ; Cardenas, Jaime ; Poitras, Carl B. ; Lipson, Michal</creator><creatorcontrib>Gabrielli, Lucas H. ; Cardenas, Jaime ; Poitras, Carl B. ; Lipson, Michal</creatorcontrib><description>The ability to render objects invisible using a cloak (such that they are not detectable by an external observer) has long been a tantalizing goal 1 , 2 , 3 , 4 , 5 , 6 . Here, we demonstrate a cloak operating in the near infrared at a wavelength of 1,550 nm. The cloak conceals a deformation on a flat reflecting surface, under which an object can be hidden. The device has an area of 225 µm 2 and hides a region of 1.6 µm 2 . It is composed of nanometre-size silicon structures with spatially varying densities across the cloak. The density variation is defined using transformation optics to define the effective index distribution of the cloak. A triangular array of silicon nanostructures is experimentally demonstrated to function as an optical cloaking device, operating in the near-infrared at a wavelength of 1550 nm. This approach could, in principle, be extended to larger areas using fabrication techniques such as nanoimprinting.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2009.117</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied and Technical Physics ; Applied classical electromagnetism ; Computer engineering ; Coordinate transformations ; Deformation ; Design ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; letter ; Light ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Silicon ; Simulation</subject><ispartof>Nature photonics, 2009-08, Vol.3 (8), p.461-463</ispartof><rights>Springer Nature Limited 2009</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-79be1e9d6bd7ffad75537f02a0830e2f2d0ecac77cc449e52ccb7151a5cdcaba3</citedby><cites>FETCH-LOGICAL-c384t-79be1e9d6bd7ffad75537f02a0830e2f2d0ecac77cc449e52ccb7151a5cdcaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2009.117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2009.117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21810962$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gabrielli, Lucas H.</creatorcontrib><creatorcontrib>Cardenas, Jaime</creatorcontrib><creatorcontrib>Poitras, Carl B.</creatorcontrib><creatorcontrib>Lipson, Michal</creatorcontrib><title>Silicon nanostructure cloak operating at optical frequencies</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>The ability to render objects invisible using a cloak (such that they are not detectable by an external observer) has long been a tantalizing goal 1 , 2 , 3 , 4 , 5 , 6 . Here, we demonstrate a cloak operating in the near infrared at a wavelength of 1,550 nm. The cloak conceals a deformation on a flat reflecting surface, under which an object can be hidden. The device has an area of 225 µm 2 and hides a region of 1.6 µm 2 . It is composed of nanometre-size silicon structures with spatially varying densities across the cloak. The density variation is defined using transformation optics to define the effective index distribution of the cloak. A triangular array of silicon nanostructures is experimentally demonstrated to function as an optical cloaking device, operating in the near-infrared at a wavelength of 1550 nm. This approach could, in principle, be extended to larger areas using fabrication techniques such as nanoimprinting.</description><subject>Applied and Technical Physics</subject><subject>Applied classical electromagnetism</subject><subject>Computer engineering</subject><subject>Coordinate transformations</subject><subject>Deformation</subject><subject>Design</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>letter</subject><subject>Light</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Silicon</subject><subject>Simulation</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UDtPwzAQthBIlMLOGCExpvgRx7HEgipeUiUGYLaci11Sgh1sZ-Df46pVmZjuTvc99H0IXRK8IJg1N2788Mm7BcVYLggRR2hGRCXLqpHs-LA3_BSdxbjBmDNJ6QzdvvZDD94VTjsfU5ggTcEUMHj9WfjRBJ16ty50ykfqQQ-FDeZ7Mg56E8_RidVDNBf7OUfvD_dvy6dy9fL4vLxblcCaKpVCtoYY2dVtJ6zVneCcCYupxg3DhlraYQMahACoKmk4BWgF4URz6EC3ms3R1U53DD57x6Q2fgouW6pG1rzitagzCO9AEHyMwVg1hv5Lhx9FsNpWpPYVqW1FKleUKdd7XR1zNBt0jhUPPEoagmVNM47scDG_3NqEP_9_tX8BuDJ69A</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Gabrielli, Lucas H.</creator><creator>Cardenas, Jaime</creator><creator>Poitras, Carl B.</creator><creator>Lipson, Michal</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20090801</creationdate><title>Silicon nanostructure cloak operating at optical frequencies</title><author>Gabrielli, Lucas H. ; Cardenas, Jaime ; Poitras, Carl B. ; Lipson, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-79be1e9d6bd7ffad75537f02a0830e2f2d0ecac77cc449e52ccb7151a5cdcaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied and Technical Physics</topic><topic>Applied classical electromagnetism</topic><topic>Computer engineering</topic><topic>Coordinate transformations</topic><topic>Deformation</topic><topic>Design</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>letter</topic><topic>Light</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Silicon</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabrielli, Lucas H.</creatorcontrib><creatorcontrib>Cardenas, Jaime</creatorcontrib><creatorcontrib>Poitras, Carl B.</creatorcontrib><creatorcontrib>Lipson, Michal</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabrielli, Lucas H.</au><au>Cardenas, Jaime</au><au>Poitras, Carl B.</au><au>Lipson, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon nanostructure cloak operating at optical frequencies</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>3</volume><issue>8</issue><spage>461</spage><epage>463</epage><pages>461-463</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The ability to render objects invisible using a cloak (such that they are not detectable by an external observer) has long been a tantalizing goal 1 , 2 , 3 , 4 , 5 , 6 . Here, we demonstrate a cloak operating in the near infrared at a wavelength of 1,550 nm. The cloak conceals a deformation on a flat reflecting surface, under which an object can be hidden. The device has an area of 225 µm 2 and hides a region of 1.6 µm 2 . It is composed of nanometre-size silicon structures with spatially varying densities across the cloak. The density variation is defined using transformation optics to define the effective index distribution of the cloak. A triangular array of silicon nanostructures is experimentally demonstrated to function as an optical cloaking device, operating in the near-infrared at a wavelength of 1550 nm. This approach could, in principle, be extended to larger areas using fabrication techniques such as nanoimprinting.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2009.117</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2009-08, Vol.3 (8), p.461-463
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_896545676
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Applied classical electromagnetism
Computer engineering
Coordinate transformations
Deformation
Design
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
letter
Light
Optics
Photonics
Physics
Physics and Astronomy
Quantum Physics
Silicon
Simulation
title Silicon nanostructure cloak operating at optical frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20nanostructure%20cloak%20operating%20at%20optical%20frequencies&rft.jtitle=Nature%20photonics&rft.au=Gabrielli,%20Lucas%20H.&rft.date=2009-08-01&rft.volume=3&rft.issue=8&rft.spage=461&rft.epage=463&rft.pages=461-463&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2009.117&rft_dat=%3Cproquest_cross%3E2478061181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896545676&rft_id=info:pmid/&rfr_iscdi=true