Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport

The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2011-05, Vol.45 (3), p.447-476
Hauptverfasser: D'Angelo, Carlo, Zunino, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 3
container_start_page 447
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 45
creator D'Angelo, Carlo
Zunino, Paolo
description The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for the approximation of incompressible flow coupled problems. We exploit stabilized mixed finite elements together with Nitsche's type matching conditions that automatically adapt to the coupling of different combinations of coefficients. We study in details the stability of the method using weighted norms, emphasizing the robustness of the stability estimate with respect to the coefficients. We also consider an iterative method to split the coupled heterogeneous problem in possibly homogeneous local problems, and we investigate the spectral properties of suitable preconditioners for the solution of the global as well as local problems. Finally, we present the simulation of the fully coupled blood flow and plasma filtration problems on a realistic geometry of a cardiovascular artery after the implantation of a drug eluting stent (DES). A similar finite element method for mass transport is then employed to study the evolution of the drug released by the DES in the blood stream and in the arterial walls, and the role of plasma filtration on the drug deposition is investigated.
doi_str_mv 10.1051/m2an/2010062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_896442090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477169791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c7fc42ccd38aedd33ca124b3d3bcf3d5805aa74c2896adf242571de5cdf2d693</originalsourceid><addsrcrecordid>eNo9kE1P3DAQhi3USmwpt_4ACwlxIcVfSZwjH4VWRUIUJHqzZseOCCRxsJ2WvfS318uuOHnked6ZeV9CvnD2lbOSnwwCxhPBOGOV2CELLhpWSK34B7JgdaWKUsvfu-RTjE-MZUqVC_Lvl1_OMdFxHlzoEHoK0xT8azdA6vxIfUvRz1PvLL1L_tnFIwqjpRcQcHUUadv7v3Et6btMJE__QMS5h0Af3eDtaoShw_gmWXYe8-fbjhRgjJMP6TP52EIf3f723SP3l9_uz78X1zdXP85PrwtUUqUC6xaVQLRSg7NWSgQu1FJaucRW2lKzEqBWKHRTgW2FEmXNrSsx17Zq5B452IzN1l5mF5N58nMY80aTFUoJ1rAMHW8gDD7G4FozhRxDWBnOzDpfs87XbPPN-OF2ZrYMfZstYRffNfmGRmumM1dsuC4m9_reh_BsqlrWpdHswdzJ5ufZ1dmtuZT_AY8PjT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896442090</pqid></control><display><type>article</type><title>Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>D'Angelo, Carlo ; Zunino, Paolo</creator><creatorcontrib>D'Angelo, Carlo ; Zunino, Paolo</creatorcontrib><description>The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for the approximation of incompressible flow coupled problems. We exploit stabilized mixed finite elements together with Nitsche's type matching conditions that automatically adapt to the coupling of different combinations of coefficients. We study in details the stability of the method using weighted norms, emphasizing the robustness of the stability estimate with respect to the coefficients. We also consider an iterative method to split the coupled heterogeneous problem in possibly homogeneous local problems, and we investigate the spectral properties of suitable preconditioners for the solution of the global as well as local problems. Finally, we present the simulation of the fully coupled blood flow and plasma filtration problems on a realistic geometry of a cardiovascular artery after the implantation of a drug eluting stent (DES). A similar finite element method for mass transport is then employed to study the evolution of the drug released by the DES in the blood stream and in the arterial walls, and the role of plasma filtration on the drug deposition is investigated.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2010062</identifier><identifier>CODEN: RMMAEV</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>65M60 ; 76D05 ; 76Z05 ; 92C50 ; Approximation ; biological flows and mass transfer ; cardiovascular applications ; Cardiovascular system ; Coupled Stokes/Darcy's problem ; Exact sciences and technology ; finite element approximation ; Hemodynamics ; interior penalty method ; Iterative methods ; iterative splitting strategy ; Mathematical analysis ; Mathematics ; Navier-Stokes equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Numerical linear algebra ; Numerical methods in probability and statistics ; optimal preconditioning ; Partial differential equations ; Pharmaceuticals ; Plasma ; Sciences and techniques of general use ; Simulation ; Stents ; Veins &amp; arteries ; Viscosity</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2011-05, Vol.45 (3), p.447-476</ispartof><rights>2015 INIST-CNRS</rights><rights>EDP Sciences, SMAI, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c7fc42ccd38aedd33ca124b3d3bcf3d5805aa74c2896adf242571de5cdf2d693</citedby><cites>FETCH-LOGICAL-c434t-c7fc42ccd38aedd33ca124b3d3bcf3d5805aa74c2896adf242571de5cdf2d693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24298808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>D'Angelo, Carlo</creatorcontrib><creatorcontrib>Zunino, Paolo</creatorcontrib><title>Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for the approximation of incompressible flow coupled problems. We exploit stabilized mixed finite elements together with Nitsche's type matching conditions that automatically adapt to the coupling of different combinations of coefficients. We study in details the stability of the method using weighted norms, emphasizing the robustness of the stability estimate with respect to the coefficients. We also consider an iterative method to split the coupled heterogeneous problem in possibly homogeneous local problems, and we investigate the spectral properties of suitable preconditioners for the solution of the global as well as local problems. Finally, we present the simulation of the fully coupled blood flow and plasma filtration problems on a realistic geometry of a cardiovascular artery after the implantation of a drug eluting stent (DES). A similar finite element method for mass transport is then employed to study the evolution of the drug released by the DES in the blood stream and in the arterial walls, and the role of plasma filtration on the drug deposition is investigated.</description><subject>65M60</subject><subject>76D05</subject><subject>76Z05</subject><subject>92C50</subject><subject>Approximation</subject><subject>biological flows and mass transfer</subject><subject>cardiovascular applications</subject><subject>Cardiovascular system</subject><subject>Coupled Stokes/Darcy's problem</subject><subject>Exact sciences and technology</subject><subject>finite element approximation</subject><subject>Hemodynamics</subject><subject>interior penalty method</subject><subject>Iterative methods</subject><subject>iterative splitting strategy</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Numerical linear algebra</subject><subject>Numerical methods in probability and statistics</subject><subject>optimal preconditioning</subject><subject>Partial differential equations</subject><subject>Pharmaceuticals</subject><subject>Plasma</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Stents</subject><subject>Veins &amp; arteries</subject><subject>Viscosity</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1P3DAQhi3USmwpt_4ACwlxIcVfSZwjH4VWRUIUJHqzZseOCCRxsJ2WvfS318uuOHnked6ZeV9CvnD2lbOSnwwCxhPBOGOV2CELLhpWSK34B7JgdaWKUsvfu-RTjE-MZUqVC_Lvl1_OMdFxHlzoEHoK0xT8azdA6vxIfUvRz1PvLL1L_tnFIwqjpRcQcHUUadv7v3Et6btMJE__QMS5h0Af3eDtaoShw_gmWXYe8-fbjhRgjJMP6TP52EIf3f723SP3l9_uz78X1zdXP85PrwtUUqUC6xaVQLRSg7NWSgQu1FJaucRW2lKzEqBWKHRTgW2FEmXNrSsx17Zq5B452IzN1l5mF5N58nMY80aTFUoJ1rAMHW8gDD7G4FozhRxDWBnOzDpfs87XbPPN-OF2ZrYMfZstYRffNfmGRmumM1dsuC4m9_reh_BsqlrWpdHswdzJ5ufZ1dmtuZT_AY8PjT4</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>D'Angelo, Carlo</creator><creator>Zunino, Paolo</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport</title><author>D'Angelo, Carlo ; Zunino, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c7fc42ccd38aedd33ca124b3d3bcf3d5805aa74c2896adf242571de5cdf2d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>65M60</topic><topic>76D05</topic><topic>76Z05</topic><topic>92C50</topic><topic>Approximation</topic><topic>biological flows and mass transfer</topic><topic>cardiovascular applications</topic><topic>Cardiovascular system</topic><topic>Coupled Stokes/Darcy's problem</topic><topic>Exact sciences and technology</topic><topic>finite element approximation</topic><topic>Hemodynamics</topic><topic>interior penalty method</topic><topic>Iterative methods</topic><topic>iterative splitting strategy</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Numerical linear algebra</topic><topic>Numerical methods in probability and statistics</topic><topic>optimal preconditioning</topic><topic>Partial differential equations</topic><topic>Pharmaceuticals</topic><topic>Plasma</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Stents</topic><topic>Veins &amp; arteries</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Angelo, Carlo</creatorcontrib><creatorcontrib>Zunino, Paolo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Angelo, Carlo</au><au>Zunino, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>45</volume><issue>3</issue><spage>447</spage><epage>476</epage><pages>447-476</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><coden>RMMAEV</coden><abstract>The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for the approximation of incompressible flow coupled problems. We exploit stabilized mixed finite elements together with Nitsche's type matching conditions that automatically adapt to the coupling of different combinations of coefficients. We study in details the stability of the method using weighted norms, emphasizing the robustness of the stability estimate with respect to the coefficients. We also consider an iterative method to split the coupled heterogeneous problem in possibly homogeneous local problems, and we investigate the spectral properties of suitable preconditioners for the solution of the global as well as local problems. Finally, we present the simulation of the fully coupled blood flow and plasma filtration problems on a realistic geometry of a cardiovascular artery after the implantation of a drug eluting stent (DES). A similar finite element method for mass transport is then employed to study the evolution of the drug released by the DES in the blood stream and in the arterial walls, and the role of plasma filtration on the drug deposition is investigated.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2010062</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2011-05, Vol.45 (3), p.447-476
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_journals_896442090
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; NUMDAM
subjects 65M60
76D05
76Z05
92C50
Approximation
biological flows and mass transfer
cardiovascular applications
Cardiovascular system
Coupled Stokes/Darcy's problem
Exact sciences and technology
finite element approximation
Hemodynamics
interior penalty method
Iterative methods
iterative splitting strategy
Mathematical analysis
Mathematics
Navier-Stokes equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Numerical linear algebra
Numerical methods in probability and statistics
optimal preconditioning
Partial differential equations
Pharmaceuticals
Plasma
Sciences and techniques of general use
Simulation
Stents
Veins & arteries
Viscosity
title Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20numerical%20approximation%20of%20coupled%20Stokes'%20and%20Darcy's%20flows%20applied%20to%20vascular%20hemodynamics%20and%20biochemical%20transport&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=D'Angelo,%20Carlo&rft.date=2011-05-01&rft.volume=45&rft.issue=3&rft.spage=447&rft.epage=476&rft.pages=447-476&rft.issn=0764-583X&rft.eissn=1290-3841&rft.coden=RMMAEV&rft_id=info:doi/10.1051/m2an/2010062&rft_dat=%3Cproquest_cross%3E2477169791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896442090&rft_id=info:pmid/&rfr_iscdi=true