The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems

The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2002-06, Vol.8, p.393-422
Hauptverfasser: Chang, Dong Eui, Bloch, Anthony M., Leonard, Naomi E., Marsden, Jerrold E., Woolsey, Craig A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue
container_start_page 393
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 8
creator Chang, Dong Eui
Bloch, Anthony M.
Leonard, Naomi E.
Marsden, Jerrold E.
Woolsey, Craig A.
description The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity) on the Hamiltonian side, which is the Hamiltonian counterpart of a class of gyroscopic forces on the Lagrangian side. [PUBLICATION ABSTRACT]
doi_str_mv 10.1051/cocv:2002045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_896418560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476940991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-68dc8457fe53381ac403d052068cf1b9ce0f3156021dcabc417adf422674755c3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhgdRsFZ3PkBwbfScuWXiTkq1YsGFdT1MJzM1Jc20M0mhb29Du3B1fvgvBz5C7hGeEAQ-22D3LxSAAhcXZIRU0pyxorgcdElzhVhek5uU1gAoGecj8rn4ddl019d707jWuiz4bBLaLoamcVU2N6to2lVt2sy01X9nZjZ104V2sL4PqXObdEuuvGmSuzvfMfl5my4ms3z-9f4xeZ3nlgF0uVSVVVwU3gnGFBrLgVUgKEhlPS5L68AzFBIoVtYsLcfCVJ5TKgteCGHZmDycdrcx7HqXOr0OfWyPL7UqJUd17B5Dj6eQjSGl6Lzexnpj4kEj6IGWHmjpMy32BwKAXQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896418560</pqid></control><display><type>article</type><title>The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>Chang, Dong Eui ; Bloch, Anthony M. ; Leonard, Naomi E. ; Marsden, Jerrold E. ; Woolsey, Craig A.</creator><creatorcontrib>Chang, Dong Eui ; Bloch, Anthony M. ; Leonard, Naomi E. ; Marsden, Jerrold E. ; Woolsey, Craig A.</creatorcontrib><description>The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity) on the Hamiltonian side, which is the Hamiltonian counterpart of a class of gyroscopic forces on the Lagrangian side. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv:2002045</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Aerospace engineering ; Closed loop systems ; Energy ; Grants</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2002-06, Vol.8, p.393-422</ispartof><rights>EDP Sciences, SMAI, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-68dc8457fe53381ac403d052068cf1b9ce0f3156021dcabc417adf422674755c3</citedby><cites>FETCH-LOGICAL-c300t-68dc8457fe53381ac403d052068cf1b9ce0f3156021dcabc417adf422674755c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Dong Eui</creatorcontrib><creatorcontrib>Bloch, Anthony M.</creatorcontrib><creatorcontrib>Leonard, Naomi E.</creatorcontrib><creatorcontrib>Marsden, Jerrold E.</creatorcontrib><creatorcontrib>Woolsey, Craig A.</creatorcontrib><title>The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity) on the Hamiltonian side, which is the Hamiltonian counterpart of a class of gyroscopic forces on the Lagrangian side. [PUBLICATION ABSTRACT]</description><subject>Aerospace engineering</subject><subject>Closed loop systems</subject><subject>Energy</subject><subject>Grants</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKw0AUhgdRsFZ3PkBwbfScuWXiTkq1YsGFdT1MJzM1Jc20M0mhb29Du3B1fvgvBz5C7hGeEAQ-22D3LxSAAhcXZIRU0pyxorgcdElzhVhek5uU1gAoGecj8rn4ddl019d707jWuiz4bBLaLoamcVU2N6to2lVt2sy01X9nZjZ104V2sL4PqXObdEuuvGmSuzvfMfl5my4ms3z-9f4xeZ3nlgF0uVSVVVwU3gnGFBrLgVUgKEhlPS5L68AzFBIoVtYsLcfCVJ5TKgteCGHZmDycdrcx7HqXOr0OfWyPL7UqJUd17B5Dj6eQjSGl6Lzexnpj4kEj6IGWHmjpMy32BwKAXQE</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Chang, Dong Eui</creator><creator>Bloch, Anthony M.</creator><creator>Leonard, Naomi E.</creator><creator>Marsden, Jerrold E.</creator><creator>Woolsey, Craig A.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020601</creationdate><title>The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems</title><author>Chang, Dong Eui ; Bloch, Anthony M. ; Leonard, Naomi E. ; Marsden, Jerrold E. ; Woolsey, Craig A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-68dc8457fe53381ac403d052068cf1b9ce0f3156021dcabc417adf422674755c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aerospace engineering</topic><topic>Closed loop systems</topic><topic>Energy</topic><topic>Grants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Dong Eui</creatorcontrib><creatorcontrib>Bloch, Anthony M.</creatorcontrib><creatorcontrib>Leonard, Naomi E.</creatorcontrib><creatorcontrib>Marsden, Jerrold E.</creatorcontrib><creatorcontrib>Woolsey, Craig A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Dong Eui</au><au>Bloch, Anthony M.</au><au>Leonard, Naomi E.</au><au>Marsden, Jerrold E.</au><au>Woolsey, Craig A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>8</volume><spage>393</spage><epage>422</epage><pages>393-422</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity) on the Hamiltonian side, which is the Hamiltonian counterpart of a class of gyroscopic forces on the Lagrangian side. [PUBLICATION ABSTRACT]</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv:2002045</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2002-06, Vol.8, p.393-422
issn 1292-8119
1262-3377
language eng
recordid cdi_proquest_journals_896418560
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; NUMDAM
subjects Aerospace engineering
Closed loop systems
Energy
Grants
title The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Equivalence%20of%20Controlled%20Lagrangian%20and%20Controlled%20Hamiltonian%20Systems&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Chang,%20Dong%20Eui&rft.date=2002-06-01&rft.volume=8&rft.spage=393&rft.epage=422&rft.pages=393-422&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv:2002045&rft_dat=%3Cproquest_cross%3E2476940991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896418560&rft_id=info:pmid/&rfr_iscdi=true