Water demand management optimization methodology

In contrast to traditional supply augmentation options, demand management options include specifying and/or replacing many small end uses that individually have a minimal effect on overall water use but that collectively can constitute significant aggregate reductions in demand. This article outline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal - American Water Works Association 2011-09, Vol.103 (9), p.74-84
Hauptverfasser: FRIEDMAN, KENNETH, HEANEY, JAMES P., MORALES, MIGUEL, PALENCHAR, JOHN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 9
container_start_page 74
container_title Journal - American Water Works Association
container_volume 103
creator FRIEDMAN, KENNETH
HEANEY, JAMES P.
MORALES, MIGUEL
PALENCHAR, JOHN
description In contrast to traditional supply augmentation options, demand management options include specifying and/or replacing many small end uses that individually have a minimal effect on overall water use but that collectively can constitute significant aggregate reductions in demand. This article outlines a systematic procedure to quantify savings potential of single‐family residential indoor end‐use devices of a given utility and then select the optimal blend of retrofits to achieve a specified goal. Three steps are used to quantify savings potential of all end‐use devices. First, a utility's current end‐use fixture inventory and associated water use is estimated from parcel‐level data for each singlefamily residence. Second, customers are clustered into relatively homogeneous water use categories based on the age of the dwelling unit and the number of bathrooms. Third, water savings are calculated directly as the difference between current and proposed use after implementation of a management option for each group. This information is used to develop performance functions that estimate total water savings as a function of the number of fixture retrofits for each group.
doi_str_mv 10.1002/j.1551-8833.2011.tb11534.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_889975368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41314658</jstor_id><sourcerecordid>41314658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4364-875ace35fe22ea017af84e67356209d22a71bbfc4c47bf1c6f1ad94681b8102b3</originalsourceid><addsrcrecordid>eNqVkEtLw0AUhQdRsFZ_ghC6T5w7r0zcheILCm6UuhsmyaQmNJk6mWLjrzcxpXs398E951z4EFoAjgBjcldHwDmEUlIaEQwQ-QyAUxYdztDsdDpHM4wxDYHjj0t01XX1sAIHNkN4rb1xQWEa3RbBUPTGNKb1gd35qql-tK9sGzTGf9rCbu2mv0YXpd525ubY5-j98eFt-RyuXp9elukqzBkVLJQx17mhvDSEGI0h1qVkRsSUC4KTghAdQ5aVOctZnJWQixJ0kTAhIZOASUbnaDHl7pz92pvOq9ruXTu8VFImScypkIPofhLlznadM6XauarRrleA1QhI1WqkoEYKagSkjoDUYTCnk_m72pr-H06Vrtfp3zxk3E4ZdeetO2UwoMAEl_QX9Hd3ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889975368</pqid></control><display><type>article</type><title>Water demand management optimization methodology</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>FRIEDMAN, KENNETH ; HEANEY, JAMES P. ; MORALES, MIGUEL ; PALENCHAR, JOHN</creator><creatorcontrib>FRIEDMAN, KENNETH ; HEANEY, JAMES P. ; MORALES, MIGUEL ; PALENCHAR, JOHN</creatorcontrib><description>In contrast to traditional supply augmentation options, demand management options include specifying and/or replacing many small end uses that individually have a minimal effect on overall water use but that collectively can constitute significant aggregate reductions in demand. This article outlines a systematic procedure to quantify savings potential of single‐family residential indoor end‐use devices of a given utility and then select the optimal blend of retrofits to achieve a specified goal. Three steps are used to quantify savings potential of all end‐use devices. First, a utility's current end‐use fixture inventory and associated water use is estimated from parcel‐level data for each singlefamily residence. Second, customers are clustered into relatively homogeneous water use categories based on the age of the dwelling unit and the number of bathrooms. Third, water savings are calculated directly as the difference between current and proposed use after implementation of a management option for each group. This information is used to develop performance functions that estimate total water savings as a function of the number of fixture retrofits for each group.</description><identifier>ISSN: 0003-150X</identifier><identifier>EISSN: 1551-8833</identifier><identifier>DOI: 10.1002/j.1551-8833.2011.tb11534.x</identifier><identifier>CODEN: JAWWA5</identifier><language>eng</language><publisher>Denver: American Water Works Association</publisher><subject>Arithmetic mean ; Bathrooms ; Best Management Practices ; Censuses ; Cost control ; Cost Savings ; Customers ; Decision support systems ; Demand ; Geographic information systems ; Information attributes ; Management decisions ; Optimization ; Planning ; Residential Water Use ; resource management ; Software ; Studies ; Toilets ; Utility Management ; Water Conservation ; Water consumption ; Water demand ; Water management ; Water shortages ; Water utilities</subject><ispartof>Journal - American Water Works Association, 2011-09, Vol.103 (9), p.74-84</ispartof><rights>Copyright © 2011 American Water Works Association</rights><rights>2011 American Water Works Association</rights><rights>Copyright American Water Works Association Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4364-875ace35fe22ea017af84e67356209d22a71bbfc4c47bf1c6f1ad94681b8102b3</citedby><cites>FETCH-LOGICAL-c4364-875ace35fe22ea017af84e67356209d22a71bbfc4c47bf1c6f1ad94681b8102b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41314658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41314658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids></links><search><creatorcontrib>FRIEDMAN, KENNETH</creatorcontrib><creatorcontrib>HEANEY, JAMES P.</creatorcontrib><creatorcontrib>MORALES, MIGUEL</creatorcontrib><creatorcontrib>PALENCHAR, JOHN</creatorcontrib><title>Water demand management optimization methodology</title><title>Journal - American Water Works Association</title><description>In contrast to traditional supply augmentation options, demand management options include specifying and/or replacing many small end uses that individually have a minimal effect on overall water use but that collectively can constitute significant aggregate reductions in demand. This article outlines a systematic procedure to quantify savings potential of single‐family residential indoor end‐use devices of a given utility and then select the optimal blend of retrofits to achieve a specified goal. Three steps are used to quantify savings potential of all end‐use devices. First, a utility's current end‐use fixture inventory and associated water use is estimated from parcel‐level data for each singlefamily residence. Second, customers are clustered into relatively homogeneous water use categories based on the age of the dwelling unit and the number of bathrooms. Third, water savings are calculated directly as the difference between current and proposed use after implementation of a management option for each group. This information is used to develop performance functions that estimate total water savings as a function of the number of fixture retrofits for each group.</description><subject>Arithmetic mean</subject><subject>Bathrooms</subject><subject>Best Management Practices</subject><subject>Censuses</subject><subject>Cost control</subject><subject>Cost Savings</subject><subject>Customers</subject><subject>Decision support systems</subject><subject>Demand</subject><subject>Geographic information systems</subject><subject>Information attributes</subject><subject>Management decisions</subject><subject>Optimization</subject><subject>Planning</subject><subject>Residential Water Use</subject><subject>resource management</subject><subject>Software</subject><subject>Studies</subject><subject>Toilets</subject><subject>Utility Management</subject><subject>Water Conservation</subject><subject>Water consumption</subject><subject>Water demand</subject><subject>Water management</subject><subject>Water shortages</subject><subject>Water utilities</subject><issn>0003-150X</issn><issn>1551-8833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkEtLw0AUhQdRsFZ_ghC6T5w7r0zcheILCm6UuhsmyaQmNJk6mWLjrzcxpXs398E951z4EFoAjgBjcldHwDmEUlIaEQwQ-QyAUxYdztDsdDpHM4wxDYHjj0t01XX1sAIHNkN4rb1xQWEa3RbBUPTGNKb1gd35qql-tK9sGzTGf9rCbu2mv0YXpd525ubY5-j98eFt-RyuXp9elukqzBkVLJQx17mhvDSEGI0h1qVkRsSUC4KTghAdQ5aVOctZnJWQixJ0kTAhIZOASUbnaDHl7pz92pvOq9ruXTu8VFImScypkIPofhLlznadM6XauarRrleA1QhI1WqkoEYKagSkjoDUYTCnk_m72pr-H06Vrtfp3zxk3E4ZdeetO2UwoMAEl_QX9Hd3ZA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>FRIEDMAN, KENNETH</creator><creator>HEANEY, JAMES P.</creator><creator>MORALES, MIGUEL</creator><creator>PALENCHAR, JOHN</creator><general>American Water Works Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0F</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>201109</creationdate><title>Water demand management optimization methodology</title><author>FRIEDMAN, KENNETH ; HEANEY, JAMES P. ; MORALES, MIGUEL ; PALENCHAR, JOHN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4364-875ace35fe22ea017af84e67356209d22a71bbfc4c47bf1c6f1ad94681b8102b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arithmetic mean</topic><topic>Bathrooms</topic><topic>Best Management Practices</topic><topic>Censuses</topic><topic>Cost control</topic><topic>Cost Savings</topic><topic>Customers</topic><topic>Decision support systems</topic><topic>Demand</topic><topic>Geographic information systems</topic><topic>Information attributes</topic><topic>Management decisions</topic><topic>Optimization</topic><topic>Planning</topic><topic>Residential Water Use</topic><topic>resource management</topic><topic>Software</topic><topic>Studies</topic><topic>Toilets</topic><topic>Utility Management</topic><topic>Water Conservation</topic><topic>Water consumption</topic><topic>Water demand</topic><topic>Water management</topic><topic>Water shortages</topic><topic>Water utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRIEDMAN, KENNETH</creatorcontrib><creatorcontrib>HEANEY, JAMES P.</creatorcontrib><creatorcontrib>MORALES, MIGUEL</creatorcontrib><creatorcontrib>PALENCHAR, JOHN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Journal - American Water Works Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRIEDMAN, KENNETH</au><au>HEANEY, JAMES P.</au><au>MORALES, MIGUEL</au><au>PALENCHAR, JOHN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water demand management optimization methodology</atitle><jtitle>Journal - American Water Works Association</jtitle><date>2011-09</date><risdate>2011</risdate><volume>103</volume><issue>9</issue><spage>74</spage><epage>84</epage><pages>74-84</pages><issn>0003-150X</issn><eissn>1551-8833</eissn><coden>JAWWA5</coden><abstract>In contrast to traditional supply augmentation options, demand management options include specifying and/or replacing many small end uses that individually have a minimal effect on overall water use but that collectively can constitute significant aggregate reductions in demand. This article outlines a systematic procedure to quantify savings potential of single‐family residential indoor end‐use devices of a given utility and then select the optimal blend of retrofits to achieve a specified goal. Three steps are used to quantify savings potential of all end‐use devices. First, a utility's current end‐use fixture inventory and associated water use is estimated from parcel‐level data for each singlefamily residence. Second, customers are clustered into relatively homogeneous water use categories based on the age of the dwelling unit and the number of bathrooms. Third, water savings are calculated directly as the difference between current and proposed use after implementation of a management option for each group. This information is used to develop performance functions that estimate total water savings as a function of the number of fixture retrofits for each group.</abstract><cop>Denver</cop><pub>American Water Works Association</pub><doi>10.1002/j.1551-8833.2011.tb11534.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-150X
ispartof Journal - American Water Works Association, 2011-09, Vol.103 (9), p.74-84
issn 0003-150X
1551-8833
language eng
recordid cdi_proquest_journals_889975368
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Arithmetic mean
Bathrooms
Best Management Practices
Censuses
Cost control
Cost Savings
Customers
Decision support systems
Demand
Geographic information systems
Information attributes
Management decisions
Optimization
Planning
Residential Water Use
resource management
Software
Studies
Toilets
Utility Management
Water Conservation
Water consumption
Water demand
Water management
Water shortages
Water utilities
title Water demand management optimization methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20demand%20management%20optimization%20methodology&rft.jtitle=Journal%20-%20American%20Water%20Works%20Association&rft.au=FRIEDMAN,%20KENNETH&rft.date=2011-09&rft.volume=103&rft.issue=9&rft.spage=74&rft.epage=84&rft.pages=74-84&rft.issn=0003-150X&rft.eissn=1551-8833&rft.coden=JAWWA5&rft_id=info:doi/10.1002/j.1551-8833.2011.tb11534.x&rft_dat=%3Cjstor_proqu%3E41314658%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889975368&rft_id=info:pmid/&rft_jstor_id=41314658&rfr_iscdi=true