Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism

To any finite group ΓSp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, H^sub κ^ of the algebra [V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of ^sup r^, where r=number of conjugacy classes of symplecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2002-02, Vol.147 (2), p.243-348
Hauptverfasser: Etingof, Pavel, Ginzburg, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 2
container_start_page 243
container_title Inventiones mathematicae
container_volume 147
creator Etingof, Pavel
Ginzburg, Victor
description To any finite group ΓSp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, H^sub κ^ of the algebra [V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of ^sup r^, where r=number of conjugacy classes of symplectic reflections in $Γ$. The algebra H^sub κ^, called a symplectic reflection algebra, is related to the coordinate ring of a Poisson deformation of the quotient singularity V/Γ. This leads to a symplectic analogue of McKay correspondence, which is most complete in case of wreath-products. If Γ is the Weyl group of a root system in a vector space ? and V=??^sup *^, then the algebras H^sub κ^ are certain 'rational' degenerations of the double affine Hecke algebra introduced earlier by Cherednik. Let $Γ=S ^sub n^, the Weyl group of ?=??^sub n^. We construct a 1-parameter deformation of the Harish-Chandra homomorphism from ?(?)^sup ?^, the algebra of invariant polynomial differential operators on ??^sub n^, to the algebra of S ^sub n^-invariant differential operators with rational coefficients on the space ^sub n^ of diagonal matrices. The second order Laplacian on ? goes, under the deformed homomorphism, to the Calogero-Moser differential operator on ^sub n^, with rational potential. Our crucial idea is to reinterpret the deformed Harish-Chandra homomorphism as a homomorphism: ?(?)^sup ?^ spherical subalgebra in H^sub κ^, where H^sub κ^ is the symplectic reflection algebra associated to the group Γ=S ^sub n^. This way, the deformed Harish-Chandra homomorphism becomes nothing but a description of the spherical subalgebra in terms of 'quantum' Hamiltonian reduction. In the 'classical' limit κ[arrow right]∞, our construction gives an isomorphism between the spherical subalgebra in H^sub ∞^ and the coordinate ring of the Calogero-Moser space. We prove that all simple H^sub ∞^-modules have dimension n!, and are parametrised by points of the Calogero-Moser space. The family of these modules forms a distinguished vector bundle on the Calogero-Moser space, whose fibers carry the regular representation of S ^sub n^. Moreover, we prove that the algebra $H^sub ∞^ is isomorphic to the endomorphism algebra of that vector bundle.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002220100171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_888562977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449272871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-971b0e29f662d5b2961840fcc02b233746f41ce7975ca721c1922b131d5763063</originalsourceid><addsrcrecordid>eNpVkDFPwzAQhS0EEqUwslvMNfjOiR2PKAKKVMQArESO4zSpkjrY7dB_j6Es6IZ7uvt0T_cIuQZ-C5yru8g5IvKkQcEJmUEmkAFqdUpmacWZ1sDPyUWMm4RkQuGMfL4dxmlwdtdbGlz7q_yWmmHt6mDigpZm8GsXPHvx0QUaJ2PdgpptQxvX-jC6hi5N6GPHyi5Ng6GdH1OFqevjeEnOWjNEd_XX5-Tj8eG9XLLV69Nzeb9iVmCxY1pBzR3qVkps8hq1hCLjrbUcaxRCZbLNwDqlVW6NQrCgEWsQ0ORKCi7FnNwc707Bf-1d3FUbvw_bZFkVRZHLFIJKEDtCNvgY07fVFPrRhEMFvPpJsPqXoPgGzXViEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888562977</pqid></control><display><type>article</type><title>Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Etingof, Pavel ; Ginzburg, Victor</creator><creatorcontrib>Etingof, Pavel ; Ginzburg, Victor</creatorcontrib><description>To any finite group ΓSp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, H^sub κ^ of the algebra [V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of ^sup r^, where r=number of conjugacy classes of symplectic reflections in $Γ$. The algebra H^sub κ^, called a symplectic reflection algebra, is related to the coordinate ring of a Poisson deformation of the quotient singularity V/Γ. This leads to a symplectic analogue of McKay correspondence, which is most complete in case of wreath-products. If Γ is the Weyl group of a root system in a vector space ? and V=??^sup *^, then the algebras H^sub κ^ are certain 'rational' degenerations of the double affine Hecke algebra introduced earlier by Cherednik. Let $Γ=S ^sub n^, the Weyl group of ?=??^sub n^. We construct a 1-parameter deformation of the Harish-Chandra homomorphism from ?(?)^sup ?^, the algebra of invariant polynomial differential operators on ??^sub n^, to the algebra of S ^sub n^-invariant differential operators with rational coefficients on the space ^sub n^ of diagonal matrices. The second order Laplacian on ? goes, under the deformed homomorphism, to the Calogero-Moser differential operator on ^sub n^, with rational potential. Our crucial idea is to reinterpret the deformed Harish-Chandra homomorphism as a homomorphism: ?(?)^sup ?^ spherical subalgebra in H^sub κ^, where H^sub κ^ is the symplectic reflection algebra associated to the group Γ=S ^sub n^. This way, the deformed Harish-Chandra homomorphism becomes nothing but a description of the spherical subalgebra in terms of 'quantum' Hamiltonian reduction. In the 'classical' limit κ[arrow right]∞, our construction gives an isomorphism between the spherical subalgebra in H^sub ∞^ and the coordinate ring of the Calogero-Moser space. We prove that all simple H^sub ∞^-modules have dimension n!, and are parametrised by points of the Calogero-Moser space. The family of these modules forms a distinguished vector bundle on the Calogero-Moser space, whose fibers carry the regular representation of S ^sub n^. Moreover, we prove that the algebra $H^sub ∞^ is isomorphic to the endomorphism algebra of that vector bundle.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s002220100171</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algebra</subject><ispartof>Inventiones mathematicae, 2002-02, Vol.147 (2), p.243-348</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-971b0e29f662d5b2961840fcc02b233746f41ce7975ca721c1922b131d5763063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Etingof, Pavel</creatorcontrib><creatorcontrib>Ginzburg, Victor</creatorcontrib><title>Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism</title><title>Inventiones mathematicae</title><description>To any finite group ΓSp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, H^sub κ^ of the algebra [V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of ^sup r^, where r=number of conjugacy classes of symplectic reflections in $Γ$. The algebra H^sub κ^, called a symplectic reflection algebra, is related to the coordinate ring of a Poisson deformation of the quotient singularity V/Γ. This leads to a symplectic analogue of McKay correspondence, which is most complete in case of wreath-products. If Γ is the Weyl group of a root system in a vector space ? and V=??^sup *^, then the algebras H^sub κ^ are certain 'rational' degenerations of the double affine Hecke algebra introduced earlier by Cherednik. Let $Γ=S ^sub n^, the Weyl group of ?=??^sub n^. We construct a 1-parameter deformation of the Harish-Chandra homomorphism from ?(?)^sup ?^, the algebra of invariant polynomial differential operators on ??^sub n^, to the algebra of S ^sub n^-invariant differential operators with rational coefficients on the space ^sub n^ of diagonal matrices. The second order Laplacian on ? goes, under the deformed homomorphism, to the Calogero-Moser differential operator on ^sub n^, with rational potential. Our crucial idea is to reinterpret the deformed Harish-Chandra homomorphism as a homomorphism: ?(?)^sup ?^ spherical subalgebra in H^sub κ^, where H^sub κ^ is the symplectic reflection algebra associated to the group Γ=S ^sub n^. This way, the deformed Harish-Chandra homomorphism becomes nothing but a description of the spherical subalgebra in terms of 'quantum' Hamiltonian reduction. In the 'classical' limit κ[arrow right]∞, our construction gives an isomorphism between the spherical subalgebra in H^sub ∞^ and the coordinate ring of the Calogero-Moser space. We prove that all simple H^sub ∞^-modules have dimension n!, and are parametrised by points of the Calogero-Moser space. The family of these modules forms a distinguished vector bundle on the Calogero-Moser space, whose fibers carry the regular representation of S ^sub n^. Moreover, we prove that the algebra $H^sub ∞^ is isomorphic to the endomorphism algebra of that vector bundle.[PUBLICATION ABSTRACT]</description><subject>Algebra</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkDFPwzAQhS0EEqUwslvMNfjOiR2PKAKKVMQArESO4zSpkjrY7dB_j6Es6IZ7uvt0T_cIuQZ-C5yru8g5IvKkQcEJmUEmkAFqdUpmacWZ1sDPyUWMm4RkQuGMfL4dxmlwdtdbGlz7q_yWmmHt6mDigpZm8GsXPHvx0QUaJ2PdgpptQxvX-jC6hi5N6GPHyi5Ng6GdH1OFqevjeEnOWjNEd_XX5-Tj8eG9XLLV69Nzeb9iVmCxY1pBzR3qVkps8hq1hCLjrbUcaxRCZbLNwDqlVW6NQrCgEWsQ0ORKCi7FnNwc707Bf-1d3FUbvw_bZFkVRZHLFIJKEDtCNvgY07fVFPrRhEMFvPpJsPqXoPgGzXViEQ</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Etingof, Pavel</creator><creator>Ginzburg, Victor</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020201</creationdate><title>Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism</title><author>Etingof, Pavel ; Ginzburg, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-971b0e29f662d5b2961840fcc02b233746f41ce7975ca721c1922b131d5763063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etingof, Pavel</creatorcontrib><creatorcontrib>Ginzburg, Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etingof, Pavel</au><au>Ginzburg, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism</atitle><jtitle>Inventiones mathematicae</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>147</volume><issue>2</issue><spage>243</spage><epage>348</epage><pages>243-348</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>To any finite group ΓSp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, H^sub κ^ of the algebra [V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of ^sup r^, where r=number of conjugacy classes of symplectic reflections in $Γ$. The algebra H^sub κ^, called a symplectic reflection algebra, is related to the coordinate ring of a Poisson deformation of the quotient singularity V/Γ. This leads to a symplectic analogue of McKay correspondence, which is most complete in case of wreath-products. If Γ is the Weyl group of a root system in a vector space ? and V=??^sup *^, then the algebras H^sub κ^ are certain 'rational' degenerations of the double affine Hecke algebra introduced earlier by Cherednik. Let $Γ=S ^sub n^, the Weyl group of ?=??^sub n^. We construct a 1-parameter deformation of the Harish-Chandra homomorphism from ?(?)^sup ?^, the algebra of invariant polynomial differential operators on ??^sub n^, to the algebra of S ^sub n^-invariant differential operators with rational coefficients on the space ^sub n^ of diagonal matrices. The second order Laplacian on ? goes, under the deformed homomorphism, to the Calogero-Moser differential operator on ^sub n^, with rational potential. Our crucial idea is to reinterpret the deformed Harish-Chandra homomorphism as a homomorphism: ?(?)^sup ?^ spherical subalgebra in H^sub κ^, where H^sub κ^ is the symplectic reflection algebra associated to the group Γ=S ^sub n^. This way, the deformed Harish-Chandra homomorphism becomes nothing but a description of the spherical subalgebra in terms of 'quantum' Hamiltonian reduction. In the 'classical' limit κ[arrow right]∞, our construction gives an isomorphism between the spherical subalgebra in H^sub ∞^ and the coordinate ring of the Calogero-Moser space. We prove that all simple H^sub ∞^-modules have dimension n!, and are parametrised by points of the Calogero-Moser space. The family of these modules forms a distinguished vector bundle on the Calogero-Moser space, whose fibers carry the regular representation of S ^sub n^. Moreover, we prove that the algebra $H^sub ∞^ is isomorphic to the endomorphism algebra of that vector bundle.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s002220100171</doi><tpages>106</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2002-02, Vol.147 (2), p.243-348
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_888562977
source SpringerLink Journals - AutoHoldings
subjects Algebra
title Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symplectic%20reflection%20algebras,%20Calogero-Moser%20space,%20and%20deformed%20Harish-Chandra%20homomorphism&rft.jtitle=Inventiones%20mathematicae&rft.au=Etingof,%20Pavel&rft.date=2002-02-01&rft.volume=147&rft.issue=2&rft.spage=243&rft.epage=348&rft.pages=243-348&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s002220100171&rft_dat=%3Cproquest_cross%3E2449272871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888562977&rft_id=info:pmid/&rfr_iscdi=true