Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4
Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperatur...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2011-09, Vol.26 (17), p.2207-2214 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2214 |
---|---|
container_issue | 17 |
container_start_page | 2207 |
container_title | Journal of materials research |
container_volume | 26 |
creator | Eichfeld, Sarah M. Shen, Haoting Eichfeld, Chad M. Mohney, Suzanne E. Dickey, Elizabeth C. Redwing, Joan M. |
description | Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects. |
doi_str_mv | 10.1557/jmr.2011.144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_887710563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_144</cupid><sourcerecordid>2443939231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-1c334a71a657a44aa29e72fc28b33fee6eb4229c4efe1c8b4265cf60066cba853</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWw8QAWe4Lt2I4zogoKUiUGYI4c59K6SuLUTigj78Ab8iS4KhIj091J3393-hC6piSlQuS3286njFCaUs5P0IwRzhORMXmKZkQpnrCC8nN0EcKWECpIzmdot9QBDxsdAMNusq2tvJ063NrOjnq0rg_Y9XjcAH7Xg_Pfn1-tjVwdm-BaW-O1d_txg12DYYiRD6tbHOIeE2O97t3eegh4CrZf4xe7aPklOmt0G-Dqt87R28P96-IxWT0vnxZ3q8QwUYwJNVnGdU61FLnmXGtWQM4aw1SVZQ2AhIozVhgODVCj4iCFaSQhUppKK5HN0c1x7-DdboIwlls3-T6eLJXKc0qEzCKUHKEw-Pgh-D-IkvIgtYxSy4PUMkqNfHrkje6iqXoN_wR-ADOzfeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887710563</pqid></control><display><type>article</type><title>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eichfeld, Sarah M. ; Shen, Haoting ; Eichfeld, Chad M. ; Mohney, Suzanne E. ; Dickey, Elizabeth C. ; Redwing, Joan M.</creator><creatorcontrib>Eichfeld, Sarah M. ; Shen, Haoting ; Eichfeld, Chad M. ; Mohney, Suzanne E. ; Dickey, Elizabeth C. ; Redwing, Joan M.</creatorcontrib><description>Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.144</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemical vapor deposition ; Electron microscopes ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nanowires ; Silicon ; Studies ; Temperature ; Thin films</subject><ispartof>Journal of materials research, 2011-09, Vol.26 (17), p.2207-2214</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-1c334a71a657a44aa29e72fc28b33fee6eb4229c4efe1c8b4265cf60066cba853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2011.144$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/jmr.2011.144$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eichfeld, Sarah M.</creatorcontrib><creatorcontrib>Shen, Haoting</creatorcontrib><creatorcontrib>Eichfeld, Chad M.</creatorcontrib><creatorcontrib>Mohney, Suzanne E.</creatorcontrib><creatorcontrib>Dickey, Elizabeth C.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><title>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical vapor deposition</subject><subject>Electron microscopes</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Silicon</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkLFOwzAQhi0EEqWw8QAWe4Lt2I4zogoKUiUGYI4c59K6SuLUTigj78Ab8iS4KhIj091J3393-hC6piSlQuS3286njFCaUs5P0IwRzhORMXmKZkQpnrCC8nN0EcKWECpIzmdot9QBDxsdAMNusq2tvJ063NrOjnq0rg_Y9XjcAH7Xg_Pfn1-tjVwdm-BaW-O1d_txg12DYYiRD6tbHOIeE2O97t3eegh4CrZf4xe7aPklOmt0G-Dqt87R28P96-IxWT0vnxZ3q8QwUYwJNVnGdU61FLnmXGtWQM4aw1SVZQ2AhIozVhgODVCj4iCFaSQhUppKK5HN0c1x7-DdboIwlls3-T6eLJXKc0qEzCKUHKEw-Pgh-D-IkvIgtYxSy4PUMkqNfHrkje6iqXoN_wR-ADOzfeE</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>Eichfeld, Sarah M.</creator><creator>Shen, Haoting</creator><creator>Eichfeld, Chad M.</creator><creator>Mohney, Suzanne E.</creator><creator>Dickey, Elizabeth C.</creator><creator>Redwing, Joan M.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110914</creationdate><title>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</title><author>Eichfeld, Sarah M. ; Shen, Haoting ; Eichfeld, Chad M. ; Mohney, Suzanne E. ; Dickey, Elizabeth C. ; Redwing, Joan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-1c334a71a657a44aa29e72fc28b33fee6eb4229c4efe1c8b4265cf60066cba853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical vapor deposition</topic><topic>Electron microscopes</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Silicon</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichfeld, Sarah M.</creatorcontrib><creatorcontrib>Shen, Haoting</creatorcontrib><creatorcontrib>Eichfeld, Chad M.</creatorcontrib><creatorcontrib>Mohney, Suzanne E.</creatorcontrib><creatorcontrib>Dickey, Elizabeth C.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichfeld, Sarah M.</au><au>Shen, Haoting</au><au>Eichfeld, Chad M.</au><au>Mohney, Suzanne E.</au><au>Dickey, Elizabeth C.</au><au>Redwing, Joan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-09-14</date><risdate>2011</risdate><volume>26</volume><issue>17</issue><spage>2207</spage><epage>2214</epage><pages>2207-2214</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.144</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2011-09, Vol.26 (17), p.2207-2214 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_887710563 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied and Technical Physics Biomaterials Chemical vapor deposition Electron microscopes Inorganic Chemistry Materials Engineering Materials research Materials Science Nanotechnology Nanowires Silicon Studies Temperature Thin films |
title | Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20phase%20equilibrium%20limitations%20on%20the%20vapor%E2%80%93liquid%E2%80%93solid%20growth%20of%20epitaxial%20silicon%20nanowires%20using%20SiCl4&rft.jtitle=Journal%20of%20materials%20research&rft.au=Eichfeld,%20Sarah%20M.&rft.date=2011-09-14&rft.volume=26&rft.issue=17&rft.spage=2207&rft.epage=2214&rft.pages=2207-2214&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2011.144&rft_dat=%3Cproquest_sprin%3E2443939231%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887710563&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_144&rfr_iscdi=true |