Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4

Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2011-09, Vol.26 (17), p.2207-2214
Hauptverfasser: Eichfeld, Sarah M., Shen, Haoting, Eichfeld, Chad M., Mohney, Suzanne E., Dickey, Elizabeth C., Redwing, Joan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2214
container_issue 17
container_start_page 2207
container_title Journal of materials research
container_volume 26
creator Eichfeld, Sarah M.
Shen, Haoting
Eichfeld, Chad M.
Mohney, Suzanne E.
Dickey, Elizabeth C.
Redwing, Joan M.
description Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.
doi_str_mv 10.1557/jmr.2011.144
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_887710563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_144</cupid><sourcerecordid>2443939231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-1c334a71a657a44aa29e72fc28b33fee6eb4229c4efe1c8b4265cf60066cba853</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWw8QAWe4Lt2I4zogoKUiUGYI4c59K6SuLUTigj78Ab8iS4KhIj091J3393-hC6piSlQuS3286njFCaUs5P0IwRzhORMXmKZkQpnrCC8nN0EcKWECpIzmdot9QBDxsdAMNusq2tvJ063NrOjnq0rg_Y9XjcAH7Xg_Pfn1-tjVwdm-BaW-O1d_txg12DYYiRD6tbHOIeE2O97t3eegh4CrZf4xe7aPklOmt0G-Dqt87R28P96-IxWT0vnxZ3q8QwUYwJNVnGdU61FLnmXGtWQM4aw1SVZQ2AhIozVhgODVCj4iCFaSQhUppKK5HN0c1x7-DdboIwlls3-T6eLJXKc0qEzCKUHKEw-Pgh-D-IkvIgtYxSy4PUMkqNfHrkje6iqXoN_wR-ADOzfeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887710563</pqid></control><display><type>article</type><title>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eichfeld, Sarah M. ; Shen, Haoting ; Eichfeld, Chad M. ; Mohney, Suzanne E. ; Dickey, Elizabeth C. ; Redwing, Joan M.</creator><creatorcontrib>Eichfeld, Sarah M. ; Shen, Haoting ; Eichfeld, Chad M. ; Mohney, Suzanne E. ; Dickey, Elizabeth C. ; Redwing, Joan M.</creatorcontrib><description>Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.144</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemical vapor deposition ; Electron microscopes ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nanowires ; Silicon ; Studies ; Temperature ; Thin films</subject><ispartof>Journal of materials research, 2011-09, Vol.26 (17), p.2207-2214</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-1c334a71a657a44aa29e72fc28b33fee6eb4229c4efe1c8b4265cf60066cba853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2011.144$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/jmr.2011.144$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eichfeld, Sarah M.</creatorcontrib><creatorcontrib>Shen, Haoting</creatorcontrib><creatorcontrib>Eichfeld, Chad M.</creatorcontrib><creatorcontrib>Mohney, Suzanne E.</creatorcontrib><creatorcontrib>Dickey, Elizabeth C.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><title>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical vapor deposition</subject><subject>Electron microscopes</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Silicon</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkLFOwzAQhi0EEqWw8QAWe4Lt2I4zogoKUiUGYI4c59K6SuLUTigj78Ab8iS4KhIj091J3393-hC6piSlQuS3286njFCaUs5P0IwRzhORMXmKZkQpnrCC8nN0EcKWECpIzmdot9QBDxsdAMNusq2tvJ063NrOjnq0rg_Y9XjcAH7Xg_Pfn1-tjVwdm-BaW-O1d_txg12DYYiRD6tbHOIeE2O97t3eegh4CrZf4xe7aPklOmt0G-Dqt87R28P96-IxWT0vnxZ3q8QwUYwJNVnGdU61FLnmXGtWQM4aw1SVZQ2AhIozVhgODVCj4iCFaSQhUppKK5HN0c1x7-DdboIwlls3-T6eLJXKc0qEzCKUHKEw-Pgh-D-IkvIgtYxSy4PUMkqNfHrkje6iqXoN_wR-ADOzfeE</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>Eichfeld, Sarah M.</creator><creator>Shen, Haoting</creator><creator>Eichfeld, Chad M.</creator><creator>Mohney, Suzanne E.</creator><creator>Dickey, Elizabeth C.</creator><creator>Redwing, Joan M.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110914</creationdate><title>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</title><author>Eichfeld, Sarah M. ; Shen, Haoting ; Eichfeld, Chad M. ; Mohney, Suzanne E. ; Dickey, Elizabeth C. ; Redwing, Joan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-1c334a71a657a44aa29e72fc28b33fee6eb4229c4efe1c8b4265cf60066cba853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical vapor deposition</topic><topic>Electron microscopes</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Silicon</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichfeld, Sarah M.</creatorcontrib><creatorcontrib>Shen, Haoting</creatorcontrib><creatorcontrib>Eichfeld, Chad M.</creatorcontrib><creatorcontrib>Mohney, Suzanne E.</creatorcontrib><creatorcontrib>Dickey, Elizabeth C.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichfeld, Sarah M.</au><au>Shen, Haoting</au><au>Eichfeld, Chad M.</au><au>Mohney, Suzanne E.</au><au>Dickey, Elizabeth C.</au><au>Redwing, Joan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-09-14</date><risdate>2011</risdate><volume>26</volume><issue>17</issue><spage>2207</spage><epage>2214</epage><pages>2207-2214</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.144</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2011-09, Vol.26 (17), p.2207-2214
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_887710563
source SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Biomaterials
Chemical vapor deposition
Electron microscopes
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanotechnology
Nanowires
Silicon
Studies
Temperature
Thin films
title Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20phase%20equilibrium%20limitations%20on%20the%20vapor%E2%80%93liquid%E2%80%93solid%20growth%20of%20epitaxial%20silicon%20nanowires%20using%20SiCl4&rft.jtitle=Journal%20of%20materials%20research&rft.au=Eichfeld,%20Sarah%20M.&rft.date=2011-09-14&rft.volume=26&rft.issue=17&rft.spage=2207&rft.epage=2214&rft.pages=2207-2214&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2011.144&rft_dat=%3Cproquest_sprin%3E2443939231%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887710563&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_144&rfr_iscdi=true