Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains

Agroecosystems provide a range of benefits that are strongly influenced by cropping practice. Crop productivity and C, N, and greenhouse gas (GHG) balances were evaluated in an 18-yr cropping system study on an Aridic Haplustoll in the northern Great Plains. Application of synthetic fertilizers cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil Science Society of America journal 2011-07, Vol.75 (4), p.1493-1502
Hauptverfasser: Bremer, E, Janzen, H.H, Ellert, B.H, McKenzie, R.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1502
container_issue 4
container_start_page 1493
container_title Soil Science Society of America journal
container_volume 75
creator Bremer, E
Janzen, H.H
Ellert, B.H
McKenzie, R.H
description Agroecosystems provide a range of benefits that are strongly influenced by cropping practice. Crop productivity and C, N, and greenhouse gas (GHG) balances were evaluated in an 18-yr cropping system study on an Aridic Haplustoll in the northern Great Plains. Application of synthetic fertilizers consistently increased crop yield and soil organic carbon (SOC), with greatest impact in perennial grass and continuous wheat (Triticum aestivum L.) rotations and least impact in rotations with fallow or annual legumes. Based on N balance, N inputs other than fertilizer were 16 to 30 kg N ha−1 yr−1 in rotations without legumes and 62 kg N ha−1 yr−1 in a legume-wheat (LW) rotation, while losses of synthetic fertilizer N were 32% in annual crop rotations and 3% in perennial grass. Due to large gains in SOC, perennial grass reduced atmospheric GHG by 20 to 29 Mg CO2 equivalent (eq.) ha−1 during the 18 yr of this study. For annual crop rotations, seed yield ranged from 1.2 to 2.5 Mg ha−1 yr−1, protein yield from 0.20 to 0.41 Mg ha−1 yr−1, and GHG intensity from 0 to 0.5 Mg CO2 eq. Mg−1 seed. Fertilized continuous wheat had the highest crop productivity and lowest net GHG intensity, while an annual LW rotation had the highest protein productivity and among the lowest GHG intensities (0.2 Mg CO2 eq. Mg−1 seed). Further evaluation at broader temporal and spatial scales is necessary to account for future changes in SOC and differences in use of crop products.
doi_str_mv 10.2136/sssaj2010.0326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_886559139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439128291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3746-6d45340b6e31376b6c5bb7f426b221b75918242d9c8b15138460cacc647924813</originalsourceid><addsrcrecordid>eNqFUUtLAzEQDqJgrV69GgRvbs17swcPWrQqpQprD55CNs22W9akJluk_96Ull69ZDIz3wO-AeASowHBVNzFGPWSoNQiSsQR6GFGeYaEwMegh6jAGS8KfgrOYlwihHmBUA-4oQ6Vd7dw0nTBz236aTeDo2CtW_h1tHCkI3zUrXbGRti4tIZYZl9WBzgMfrVq3ByWm9jZb1h269kGege7hYUTH1IJbqulO_jR6sbFc3BS6zbai33tg-nz0-fwJRu_j16HD-PM0JyJTMwYpwxVwlJMc1EJw6sqrxkRFSG4ynmBJWFkVhhZYY6pZAIZbYxgeUGYxLQPrne6q-B_1jZ2aunXwSVLJaXgiU-LBBrsQCb4GIOt1So03zpsFEZqG6k6RKq2kSbCzV5VR6PbOqRQmnhgEcaQYIVMuPsd7rdp7eYfVVU-vJGy3L5ptPe52vFr7ZWeh-QxLdOWpbPJnOWS_gGr35Bo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>886559139</pqid></control><display><type>article</type><title>Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains</title><source>Wiley-Blackwell Journals</source><creator>Bremer, E ; Janzen, H.H ; Ellert, B.H ; McKenzie, R.H</creator><creatorcontrib>Bremer, E ; Janzen, H.H ; Ellert, B.H ; McKenzie, R.H</creatorcontrib><description>Agroecosystems provide a range of benefits that are strongly influenced by cropping practice. Crop productivity and C, N, and greenhouse gas (GHG) balances were evaluated in an 18-yr cropping system study on an Aridic Haplustoll in the northern Great Plains. Application of synthetic fertilizers consistently increased crop yield and soil organic carbon (SOC), with greatest impact in perennial grass and continuous wheat (Triticum aestivum L.) rotations and least impact in rotations with fallow or annual legumes. Based on N balance, N inputs other than fertilizer were 16 to 30 kg N ha−1 yr−1 in rotations without legumes and 62 kg N ha−1 yr−1 in a legume-wheat (LW) rotation, while losses of synthetic fertilizer N were 32% in annual crop rotations and 3% in perennial grass. Due to large gains in SOC, perennial grass reduced atmospheric GHG by 20 to 29 Mg CO2 equivalent (eq.) ha−1 during the 18 yr of this study. For annual crop rotations, seed yield ranged from 1.2 to 2.5 Mg ha−1 yr−1, protein yield from 0.20 to 0.41 Mg ha−1 yr−1, and GHG intensity from 0 to 0.5 Mg CO2 eq. Mg−1 seed. Fertilized continuous wheat had the highest crop productivity and lowest net GHG intensity, while an annual LW rotation had the highest protein productivity and among the lowest GHG intensities (0.2 Mg CO2 eq. Mg−1 seed). Further evaluation at broader temporal and spatial scales is necessary to account for future changes in SOC and differences in use of crop products.</description><identifier>ISSN: 0361-5995</identifier><identifier>EISSN: 1435-0661</identifier><identifier>DOI: 10.2136/sssaj2010.0326</identifier><identifier>CODEN: SSSJD4</identifier><language>eng</language><publisher>Madison, WI: Soil Science Society of America</publisher><subject>Agricultural ecosystems ; Agricultural practices ; Agrochemicals ; agroecosystems ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; carbon ; carbon dioxide ; Crop production ; Crop rotation ; Crop yield ; Cropping systems ; Cropping systems. Cultivation. Soil tillage ; Earth sciences ; Earth, ocean, space ; Ecosystems ; Exact sciences and technology ; Experiments ; fallow ; Fertilizers ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Generalities. Cropping systems and patterns ; Grasses ; Greenhouse gases ; Haplustolls ; Irrigation ; Legumes ; nitrogen ; nitrogen fertilizers ; Organic carbon ; Precipitation ; seed yield ; Soil fertility ; soil organic carbon ; Soil science ; Soils ; Standard deviation ; Surficial geology ; Triticum aestivum ; Wheat</subject><ispartof>Soil Science Society of America journal, 2011-07, Vol.75 (4), p.1493-1502</ispartof><rights>Copyright © by the Soil Science Society of America, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Jul/Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3746-6d45340b6e31376b6c5bb7f426b221b75918242d9c8b15138460cacc647924813</citedby><cites>FETCH-LOGICAL-c3746-6d45340b6e31376b6c5bb7f426b221b75918242d9c8b15138460cacc647924813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fsssaj2010.0326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fsssaj2010.0326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24406498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bremer, E</creatorcontrib><creatorcontrib>Janzen, H.H</creatorcontrib><creatorcontrib>Ellert, B.H</creatorcontrib><creatorcontrib>McKenzie, R.H</creatorcontrib><title>Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains</title><title>Soil Science Society of America journal</title><description>Agroecosystems provide a range of benefits that are strongly influenced by cropping practice. Crop productivity and C, N, and greenhouse gas (GHG) balances were evaluated in an 18-yr cropping system study on an Aridic Haplustoll in the northern Great Plains. Application of synthetic fertilizers consistently increased crop yield and soil organic carbon (SOC), with greatest impact in perennial grass and continuous wheat (Triticum aestivum L.) rotations and least impact in rotations with fallow or annual legumes. Based on N balance, N inputs other than fertilizer were 16 to 30 kg N ha−1 yr−1 in rotations without legumes and 62 kg N ha−1 yr−1 in a legume-wheat (LW) rotation, while losses of synthetic fertilizer N were 32% in annual crop rotations and 3% in perennial grass. Due to large gains in SOC, perennial grass reduced atmospheric GHG by 20 to 29 Mg CO2 equivalent (eq.) ha−1 during the 18 yr of this study. For annual crop rotations, seed yield ranged from 1.2 to 2.5 Mg ha−1 yr−1, protein yield from 0.20 to 0.41 Mg ha−1 yr−1, and GHG intensity from 0 to 0.5 Mg CO2 eq. Mg−1 seed. Fertilized continuous wheat had the highest crop productivity and lowest net GHG intensity, while an annual LW rotation had the highest protein productivity and among the lowest GHG intensities (0.2 Mg CO2 eq. Mg−1 seed). Further evaluation at broader temporal and spatial scales is necessary to account for future changes in SOC and differences in use of crop products.</description><subject>Agricultural ecosystems</subject><subject>Agricultural practices</subject><subject>Agrochemicals</subject><subject>agroecosystems</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>carbon</subject><subject>carbon dioxide</subject><subject>Crop production</subject><subject>Crop rotation</subject><subject>Crop yield</subject><subject>Cropping systems</subject><subject>Cropping systems. Cultivation. Soil tillage</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecosystems</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>fallow</subject><subject>Fertilizers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Generalities. Cropping systems and patterns</subject><subject>Grasses</subject><subject>Greenhouse gases</subject><subject>Haplustolls</subject><subject>Irrigation</subject><subject>Legumes</subject><subject>nitrogen</subject><subject>nitrogen fertilizers</subject><subject>Organic carbon</subject><subject>Precipitation</subject><subject>seed yield</subject><subject>Soil fertility</subject><subject>soil organic carbon</subject><subject>Soil science</subject><subject>Soils</subject><subject>Standard deviation</subject><subject>Surficial geology</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0361-5995</issn><issn>1435-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUUtLAzEQDqJgrV69GgRvbs17swcPWrQqpQprD55CNs22W9akJluk_96Ull69ZDIz3wO-AeASowHBVNzFGPWSoNQiSsQR6GFGeYaEwMegh6jAGS8KfgrOYlwihHmBUA-4oQ6Vd7dw0nTBz236aTeDo2CtW_h1tHCkI3zUrXbGRti4tIZYZl9WBzgMfrVq3ByWm9jZb1h269kGege7hYUTH1IJbqulO_jR6sbFc3BS6zbai33tg-nz0-fwJRu_j16HD-PM0JyJTMwYpwxVwlJMc1EJw6sqrxkRFSG4ynmBJWFkVhhZYY6pZAIZbYxgeUGYxLQPrne6q-B_1jZ2aunXwSVLJaXgiU-LBBrsQCb4GIOt1So03zpsFEZqG6k6RKq2kSbCzV5VR6PbOqRQmnhgEcaQYIVMuPsd7rdp7eYfVVU-vJGy3L5ptPe52vFr7ZWeh-QxLdOWpbPJnOWS_gGr35Bo</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Bremer, E</creator><creator>Janzen, H.H</creator><creator>Ellert, B.H</creator><creator>McKenzie, R.H</creator><general>Soil Science Society of America</general><general>The Soil Science Society of America, Inc</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>201107</creationdate><title>Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains</title><author>Bremer, E ; Janzen, H.H ; Ellert, B.H ; McKenzie, R.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3746-6d45340b6e31376b6c5bb7f426b221b75918242d9c8b15138460cacc647924813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural ecosystems</topic><topic>Agricultural practices</topic><topic>Agrochemicals</topic><topic>agroecosystems</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>carbon</topic><topic>carbon dioxide</topic><topic>Crop production</topic><topic>Crop rotation</topic><topic>Crop yield</topic><topic>Cropping systems</topic><topic>Cropping systems. Cultivation. Soil tillage</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecosystems</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>fallow</topic><topic>Fertilizers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Generalities. Cropping systems and patterns</topic><topic>Grasses</topic><topic>Greenhouse gases</topic><topic>Haplustolls</topic><topic>Irrigation</topic><topic>Legumes</topic><topic>nitrogen</topic><topic>nitrogen fertilizers</topic><topic>Organic carbon</topic><topic>Precipitation</topic><topic>seed yield</topic><topic>Soil fertility</topic><topic>soil organic carbon</topic><topic>Soil science</topic><topic>Soils</topic><topic>Standard deviation</topic><topic>Surficial geology</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bremer, E</creatorcontrib><creatorcontrib>Janzen, H.H</creatorcontrib><creatorcontrib>Ellert, B.H</creatorcontrib><creatorcontrib>McKenzie, R.H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Soil Science Society of America journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bremer, E</au><au>Janzen, H.H</au><au>Ellert, B.H</au><au>McKenzie, R.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains</atitle><jtitle>Soil Science Society of America journal</jtitle><date>2011-07</date><risdate>2011</risdate><volume>75</volume><issue>4</issue><spage>1493</spage><epage>1502</epage><pages>1493-1502</pages><issn>0361-5995</issn><eissn>1435-0661</eissn><coden>SSSJD4</coden><abstract>Agroecosystems provide a range of benefits that are strongly influenced by cropping practice. Crop productivity and C, N, and greenhouse gas (GHG) balances were evaluated in an 18-yr cropping system study on an Aridic Haplustoll in the northern Great Plains. Application of synthetic fertilizers consistently increased crop yield and soil organic carbon (SOC), with greatest impact in perennial grass and continuous wheat (Triticum aestivum L.) rotations and least impact in rotations with fallow or annual legumes. Based on N balance, N inputs other than fertilizer were 16 to 30 kg N ha−1 yr−1 in rotations without legumes and 62 kg N ha−1 yr−1 in a legume-wheat (LW) rotation, while losses of synthetic fertilizer N were 32% in annual crop rotations and 3% in perennial grass. Due to large gains in SOC, perennial grass reduced atmospheric GHG by 20 to 29 Mg CO2 equivalent (eq.) ha−1 during the 18 yr of this study. For annual crop rotations, seed yield ranged from 1.2 to 2.5 Mg ha−1 yr−1, protein yield from 0.20 to 0.41 Mg ha−1 yr−1, and GHG intensity from 0 to 0.5 Mg CO2 eq. Mg−1 seed. Fertilized continuous wheat had the highest crop productivity and lowest net GHG intensity, while an annual LW rotation had the highest protein productivity and among the lowest GHG intensities (0.2 Mg CO2 eq. Mg−1 seed). Further evaluation at broader temporal and spatial scales is necessary to account for future changes in SOC and differences in use of crop products.</abstract><cop>Madison, WI</cop><pub>Soil Science Society of America</pub><doi>10.2136/sssaj2010.0326</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5995
ispartof Soil Science Society of America journal, 2011-07, Vol.75 (4), p.1493-1502
issn 0361-5995
1435-0661
language eng
recordid cdi_proquest_journals_886559139
source Wiley-Blackwell Journals
subjects Agricultural ecosystems
Agricultural practices
Agrochemicals
agroecosystems
Agronomy. Soil science and plant productions
Biological and medical sciences
carbon
carbon dioxide
Crop production
Crop rotation
Crop yield
Cropping systems
Cropping systems. Cultivation. Soil tillage
Earth sciences
Earth, ocean, space
Ecosystems
Exact sciences and technology
Experiments
fallow
Fertilizers
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Generalities. Cropping systems and patterns
Grasses
Greenhouse gases
Haplustolls
Irrigation
Legumes
nitrogen
nitrogen fertilizers
Organic carbon
Precipitation
seed yield
Soil fertility
soil organic carbon
Soil science
Soils
Standard deviation
Surficial geology
Triticum aestivum
Wheat
title Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon,%20Nitrogen,%20and%20Greenhouse%20Gas%20Balances%20in%20an%2018-Year%20Cropping%20System%20Study%20on%20the%20Northern%20Great%20Plains&rft.jtitle=Soil%20Science%20Society%20of%20America%20journal&rft.au=Bremer,%20E&rft.date=2011-07&rft.volume=75&rft.issue=4&rft.spage=1493&rft.epage=1502&rft.pages=1493-1502&rft.issn=0361-5995&rft.eissn=1435-0661&rft.coden=SSSJD4&rft_id=info:doi/10.2136/sssaj2010.0326&rft_dat=%3Cproquest_cross%3E2439128291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=886559139&rft_id=info:pmid/&rfr_iscdi=true