A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging

In this work, we exploit the fact that wavelets can represent magnetic resonance images well, with relatively few coefficients. We use this property to improve magnetic resonance imaging (MRI) reconstructions from undersampled data with arbitrary k-space trajectories. Reconstruction is posed as an o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2011-09, Vol.30 (9), p.1649-1660
Hauptverfasser: Guerquin-Kern, M., Haberlin, M., Pruessmann, K. P., Unser, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we exploit the fact that wavelets can represent magnetic resonance images well, with relatively few coefficients. We use this property to improve magnetic resonance imaging (MRI) reconstructions from undersampled data with arbitrary k-space trajectories. Reconstruction is posed as an optimization problem that could be solved with the iterative shrinkage/thresholding algorithm (ISTA) which, unfortunately, converges slowly. To make the approach more practical, we propose a variant that combines recent improvements in convex optimization and that can be tuned to a given specific k-space trajectory. We present a mathematical analysis that explains the performance of the algorithms. Using simulated and in vivo data, we show that our nonlinear method is fast, as it accelerates ISTA by almost two orders of magnitude. We also show that it remains competitive with TV regularization in terms of image quality.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2011.2140121