Online identification and control of a DC motor using learning adaptation of neural networks
This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural net...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2000-05, Vol.36 (3), p.935-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 3 |
container_start_page | 935 |
container_title | IEEE transactions on industry applications |
container_volume | 36 |
creator | Rubaai, A. Kotaru, R. |
description | This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise. |
doi_str_mv | 10.1109/28.845075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_885098251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>845075</ieee_id><sourcerecordid>914638264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</originalsourceid><addsrcrecordid>eNqN0TtLBDEQAOAgCp6PwtYqWCgWq3nMbpJSziccXKOdsOR2E8m5l5zJLuK_N8ceFhZiNQPzZYbJIHRCyRWlRF0zeSWhJKLcQROquCoUr8QumhCieKGUgn10kNKSEAolhQl6nfvOeYNda3zvrGt074LH2re4Cb6PocPBYo1vp3gV-hDxkJx_w53R0W8S3ep1P77Jzpsh6i6H_jPE93SE9qzukjnexkP0cn_3PH0sZvOHp-nNrGiA875oKgZKKs2VYBUHyFnDrDW8rUARQSQxVtGKUG0FWCUW0HIoSyMXFBZAGD9EF2PfdQwfg0l9vXKpMV2nvQlDqhWFiktWQZbnf0qWv0xS-Q8ogQrBN7PPfsFlGKLP69ZSlkRJVtKMLkfUxJBSNLZeR7fS8aumpN7cLferx7tlezpaZ4z5cdviN1t5kMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885098251</pqid></control><display><type>article</type><title>Online identification and control of a DC motor using learning adaptation of neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Rubaai, A. ; Kotaru, R.</creator><creatorcontrib>Rubaai, A. ; Kotaru, R.</creatorcontrib><description>This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/28.845075</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Adaptive control ; Algorithms ; Artificial neural networks ; Control systems ; DC motors ; Direct current ; Electric motors ; Learning ; Neural networks ; Nonlinearity ; Programmable control ; Stability ; Studies ; Topology ; Training ; Uncertainty ; Velocity control</subject><ispartof>IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.935-942</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</citedby><cites>FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/845075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/845075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rubaai, A.</creatorcontrib><creatorcontrib>Kotaru, R.</creatorcontrib><title>Online identification and control of a DC motor using learning adaptation of neural networks</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.</description><subject>Absorption</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Control systems</subject><subject>DC motors</subject><subject>Direct current</subject><subject>Electric motors</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Programmable control</subject><subject>Stability</subject><subject>Studies</subject><subject>Topology</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Velocity control</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0TtLBDEQAOAgCp6PwtYqWCgWq3nMbpJSziccXKOdsOR2E8m5l5zJLuK_N8ceFhZiNQPzZYbJIHRCyRWlRF0zeSWhJKLcQROquCoUr8QumhCieKGUgn10kNKSEAolhQl6nfvOeYNda3zvrGt074LH2re4Cb6PocPBYo1vp3gV-hDxkJx_w53R0W8S3ep1P77Jzpsh6i6H_jPE93SE9qzukjnexkP0cn_3PH0sZvOHp-nNrGiA875oKgZKKs2VYBUHyFnDrDW8rUARQSQxVtGKUG0FWCUW0HIoSyMXFBZAGD9EF2PfdQwfg0l9vXKpMV2nvQlDqhWFiktWQZbnf0qWv0xS-Q8ogQrBN7PPfsFlGKLP69ZSlkRJVtKMLkfUxJBSNLZeR7fS8aumpN7cLferx7tlezpaZ4z5cdviN1t5kMI</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Rubaai, A.</creator><creator>Kotaru, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20000501</creationdate><title>Online identification and control of a DC motor using learning adaptation of neural networks</title><author>Rubaai, A. ; Kotaru, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Control systems</topic><topic>DC motors</topic><topic>Direct current</topic><topic>Electric motors</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Programmable control</topic><topic>Stability</topic><topic>Studies</topic><topic>Topology</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubaai, A.</creatorcontrib><creatorcontrib>Kotaru, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rubaai, A.</au><au>Kotaru, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online identification and control of a DC motor using learning adaptation of neural networks</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2000-05-01</date><risdate>2000</risdate><volume>36</volume><issue>3</issue><spage>935</spage><epage>942</epage><pages>935-942</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/28.845075</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.935-942 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_885098251 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Adaptive control Algorithms Artificial neural networks Control systems DC motors Direct current Electric motors Learning Neural networks Nonlinearity Programmable control Stability Studies Topology Training Uncertainty Velocity control |
title | Online identification and control of a DC motor using learning adaptation of neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20identification%20and%20control%20of%20a%20DC%20motor%20using%20learning%20adaptation%20of%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Rubaai,%20A.&rft.date=2000-05-01&rft.volume=36&rft.issue=3&rft.spage=935&rft.epage=942&rft.pages=935-942&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/28.845075&rft_dat=%3Cproquest_RIE%3E914638264%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885098251&rft_id=info:pmid/&rft_ieee_id=845075&rfr_iscdi=true |