Online identification and control of a DC motor using learning adaptation of neural networks

This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2000-05, Vol.36 (3), p.935-942
Hauptverfasser: Rubaai, A., Kotaru, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 3
container_start_page 935
container_title IEEE transactions on industry applications
container_volume 36
creator Rubaai, A.
Kotaru, R.
description This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.
doi_str_mv 10.1109/28.845075
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_885098251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>845075</ieee_id><sourcerecordid>914638264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</originalsourceid><addsrcrecordid>eNqN0TtLBDEQAOAgCp6PwtYqWCgWq3nMbpJSziccXKOdsOR2E8m5l5zJLuK_N8ceFhZiNQPzZYbJIHRCyRWlRF0zeSWhJKLcQROquCoUr8QumhCieKGUgn10kNKSEAolhQl6nfvOeYNda3zvrGt074LH2re4Cb6PocPBYo1vp3gV-hDxkJx_w53R0W8S3ep1P77Jzpsh6i6H_jPE93SE9qzukjnexkP0cn_3PH0sZvOHp-nNrGiA875oKgZKKs2VYBUHyFnDrDW8rUARQSQxVtGKUG0FWCUW0HIoSyMXFBZAGD9EF2PfdQwfg0l9vXKpMV2nvQlDqhWFiktWQZbnf0qWv0xS-Q8ogQrBN7PPfsFlGKLP69ZSlkRJVtKMLkfUxJBSNLZeR7fS8aumpN7cLferx7tlezpaZ4z5cdviN1t5kMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885098251</pqid></control><display><type>article</type><title>Online identification and control of a DC motor using learning adaptation of neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Rubaai, A. ; Kotaru, R.</creator><creatorcontrib>Rubaai, A. ; Kotaru, R.</creatorcontrib><description>This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/28.845075</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Adaptive control ; Algorithms ; Artificial neural networks ; Control systems ; DC motors ; Direct current ; Electric motors ; Learning ; Neural networks ; Nonlinearity ; Programmable control ; Stability ; Studies ; Topology ; Training ; Uncertainty ; Velocity control</subject><ispartof>IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.935-942</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</citedby><cites>FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/845075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/845075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rubaai, A.</creatorcontrib><creatorcontrib>Kotaru, R.</creatorcontrib><title>Online identification and control of a DC motor using learning adaptation of neural networks</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.</description><subject>Absorption</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Control systems</subject><subject>DC motors</subject><subject>Direct current</subject><subject>Electric motors</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Programmable control</subject><subject>Stability</subject><subject>Studies</subject><subject>Topology</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Velocity control</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0TtLBDEQAOAgCp6PwtYqWCgWq3nMbpJSziccXKOdsOR2E8m5l5zJLuK_N8ceFhZiNQPzZYbJIHRCyRWlRF0zeSWhJKLcQROquCoUr8QumhCieKGUgn10kNKSEAolhQl6nfvOeYNda3zvrGt074LH2re4Cb6PocPBYo1vp3gV-hDxkJx_w53R0W8S3ep1P77Jzpsh6i6H_jPE93SE9qzukjnexkP0cn_3PH0sZvOHp-nNrGiA875oKgZKKs2VYBUHyFnDrDW8rUARQSQxVtGKUG0FWCUW0HIoSyMXFBZAGD9EF2PfdQwfg0l9vXKpMV2nvQlDqhWFiktWQZbnf0qWv0xS-Q8ogQrBN7PPfsFlGKLP69ZSlkRJVtKMLkfUxJBSNLZeR7fS8aumpN7cLferx7tlezpaZ4z5cdviN1t5kMI</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Rubaai, A.</creator><creator>Kotaru, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20000501</creationdate><title>Online identification and control of a DC motor using learning adaptation of neural networks</title><author>Rubaai, A. ; Kotaru, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c624989a397263449a3c2ffe3d64907080ef91601af74f97b4d3455e8b14b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Control systems</topic><topic>DC motors</topic><topic>Direct current</topic><topic>Electric motors</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Programmable control</topic><topic>Stability</topic><topic>Studies</topic><topic>Topology</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubaai, A.</creatorcontrib><creatorcontrib>Kotaru, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rubaai, A.</au><au>Kotaru, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online identification and control of a DC motor using learning adaptation of neural networks</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2000-05-01</date><risdate>2000</risdate><volume>36</volume><issue>3</issue><spage>935</spage><epage>942</epage><pages>935-942</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper tackles the problem of the speed control of a DC motor in a very general sense. Use is made of the power of feedforward artificial neural networks to capture and emulate detailed nonlinear mappings, in order to implement a full nonlinear control law. The random training for the neural networks is accomplished online, which enables better absorption of system uncertainties into the neural controller. An adaptive learning algorithm, which attempts to keep the learning rate as large as possible while maintaining the stability of the learning process is proposed. This simplifies the learning algorithm in terms of computation time, which is of special importance in real-time implementation. The effectiveness of the control topologies with the proposed adaptive learning algorithm is demonstrated. It is found that the proposed adaptive leaning mechanism accelerates training speed. Promising results have also been observed when the neural controller is trained in an environment contaminated with noise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/28.845075</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.935-942
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_885098251
source IEEE Electronic Library (IEL)
subjects Absorption
Adaptive control
Algorithms
Artificial neural networks
Control systems
DC motors
Direct current
Electric motors
Learning
Neural networks
Nonlinearity
Programmable control
Stability
Studies
Topology
Training
Uncertainty
Velocity control
title Online identification and control of a DC motor using learning adaptation of neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20identification%20and%20control%20of%20a%20DC%20motor%20using%20learning%20adaptation%20of%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Rubaai,%20A.&rft.date=2000-05-01&rft.volume=36&rft.issue=3&rft.spage=935&rft.epage=942&rft.pages=935-942&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/28.845075&rft_dat=%3Cproquest_RIE%3E914638264%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885098251&rft_id=info:pmid/&rft_ieee_id=845075&rfr_iscdi=true