Characterization of Kalman filter residuals in the presence of mismodeling
The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a differen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2000-01, Vol.36 (1), p.114-131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 36 |
creator | Hanlon, P.D. Maybeck, P.S. |
description | The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices. |
doi_str_mv | 10.1109/7.826316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884883221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>826316</ieee_id><sourcerecordid>27217332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</originalsourceid><addsrcrecordid>eNqN0k1LxDAQBuAgCq6r4NlT8SBeqpmk-TrK4rfgRc8lTSeapduuSXvQX2-XFQUPrqcwMw8vSRhCDoGeAVBzrs40kxzkFpmAECo3kvJtMqEUdG6YgF2yl9J8LAtd8Am5m73aaF2PMXzYPnRt1vns3jYL22Y-NGM_i5hCPdgmZaHN-lfMlmMHW4crughp0dXYhPZln-z4UeHB1zklz1eXT7Ob_OHx-nZ28ZC7Qpg-9wqqympAY4uKC62FrEBS56qaVd7UzljlmVQ1AyhqWwl03qKglntTgAY-JSfr3GXs3gZMfTlewmHT2Ba7IZXMMCYk05uh1gUAl_-AYKShbDNUDAwI-BdUnK8ST_-EIBUwzqRcZR7_ovNuiO341eX4EK05Y_CT52KXUkRfLmNY2PheAi1XC1Kqcr0gIz1a04CI3-xr-Amw4LPJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884883221</pqid></control><display><type>article</type><title>Characterization of Kalman filter residuals in the presence of mismodeling</title><source>IEEE Electronic Library (IEL)</source><creator>Hanlon, P.D. ; Maybeck, P.S.</creator><creatorcontrib>Hanlon, P.D. ; Maybeck, P.S.</creatorcontrib><description>The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.826316</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive estimation ; Aerospace control ; Algorithms ; Banks ; Computation ; Computational modeling ; Covariance ; Covariance matrix ; Kalman filters ; Matched filters ; Mathematical analysis ; Matrices ; Matrix methods ; Military computing ; Nonlinear filters ; Standard deviation ; State estimation ; Studies ; System testing</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.114-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</citedby><cites>FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/826316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/826316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanlon, P.D.</creatorcontrib><creatorcontrib>Maybeck, P.S.</creatorcontrib><title>Characterization of Kalman filter residuals in the presence of mismodeling</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.</description><subject>Adaptive estimation</subject><subject>Aerospace control</subject><subject>Algorithms</subject><subject>Banks</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Covariance</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Military computing</subject><subject>Nonlinear filters</subject><subject>Standard deviation</subject><subject>State estimation</subject><subject>Studies</subject><subject>System testing</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0k1LxDAQBuAgCq6r4NlT8SBeqpmk-TrK4rfgRc8lTSeapduuSXvQX2-XFQUPrqcwMw8vSRhCDoGeAVBzrs40kxzkFpmAECo3kvJtMqEUdG6YgF2yl9J8LAtd8Am5m73aaF2PMXzYPnRt1vns3jYL22Y-NGM_i5hCPdgmZaHN-lfMlmMHW4crughp0dXYhPZln-z4UeHB1zklz1eXT7Ob_OHx-nZ28ZC7Qpg-9wqqympAY4uKC62FrEBS56qaVd7UzljlmVQ1AyhqWwl03qKglntTgAY-JSfr3GXs3gZMfTlewmHT2Ba7IZXMMCYk05uh1gUAl_-AYKShbDNUDAwI-BdUnK8ST_-EIBUwzqRcZR7_ovNuiO341eX4EK05Y_CT52KXUkRfLmNY2PheAi1XC1Kqcr0gIz1a04CI3-xr-Amw4LPJ</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Hanlon, P.D.</creator><creator>Maybeck, P.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope><scope>KR7</scope></search><sort><creationdate>200001</creationdate><title>Characterization of Kalman filter residuals in the presence of mismodeling</title><author>Hanlon, P.D. ; Maybeck, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive estimation</topic><topic>Aerospace control</topic><topic>Algorithms</topic><topic>Banks</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Covariance</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Military computing</topic><topic>Nonlinear filters</topic><topic>Standard deviation</topic><topic>State estimation</topic><topic>Studies</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanlon, P.D.</creatorcontrib><creatorcontrib>Maybeck, P.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanlon, P.D.</au><au>Maybeck, P.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Kalman filter residuals in the presence of mismodeling</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2000-01</date><risdate>2000</risdate><volume>36</volume><issue>1</issue><spage>114</spage><epage>131</epage><pages>114-131</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/7.826316</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.114-131 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_884883221 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive estimation Aerospace control Algorithms Banks Computation Computational modeling Covariance Covariance matrix Kalman filters Matched filters Mathematical analysis Matrices Matrix methods Military computing Nonlinear filters Standard deviation State estimation Studies System testing |
title | Characterization of Kalman filter residuals in the presence of mismodeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Kalman%20filter%20residuals%20in%20the%20presence%20of%20mismodeling&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Hanlon,%20P.D.&rft.date=2000-01&rft.volume=36&rft.issue=1&rft.spage=114&rft.epage=131&rft.pages=114-131&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.826316&rft_dat=%3Cproquest_RIE%3E27217332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884883221&rft_id=info:pmid/&rft_ieee_id=826316&rfr_iscdi=true |