Characterization of Kalman filter residuals in the presence of mismodeling

The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2000-01, Vol.36 (1), p.114-131
Hauptverfasser: Hanlon, P.D., Maybeck, P.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 114
container_title IEEE transactions on aerospace and electronic systems
container_volume 36
creator Hanlon, P.D.
Maybeck, P.S.
description The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.
doi_str_mv 10.1109/7.826316
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884883221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>826316</ieee_id><sourcerecordid>27217332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</originalsourceid><addsrcrecordid>eNqN0k1LxDAQBuAgCq6r4NlT8SBeqpmk-TrK4rfgRc8lTSeapduuSXvQX2-XFQUPrqcwMw8vSRhCDoGeAVBzrs40kxzkFpmAECo3kvJtMqEUdG6YgF2yl9J8LAtd8Am5m73aaF2PMXzYPnRt1vns3jYL22Y-NGM_i5hCPdgmZaHN-lfMlmMHW4crughp0dXYhPZln-z4UeHB1zklz1eXT7Ob_OHx-nZ28ZC7Qpg-9wqqympAY4uKC62FrEBS56qaVd7UzljlmVQ1AyhqWwl03qKglntTgAY-JSfr3GXs3gZMfTlewmHT2Ba7IZXMMCYk05uh1gUAl_-AYKShbDNUDAwI-BdUnK8ST_-EIBUwzqRcZR7_ovNuiO341eX4EK05Y_CT52KXUkRfLmNY2PheAi1XC1Kqcr0gIz1a04CI3-xr-Amw4LPJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884883221</pqid></control><display><type>article</type><title>Characterization of Kalman filter residuals in the presence of mismodeling</title><source>IEEE Electronic Library (IEL)</source><creator>Hanlon, P.D. ; Maybeck, P.S.</creator><creatorcontrib>Hanlon, P.D. ; Maybeck, P.S.</creatorcontrib><description>The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.826316</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive estimation ; Aerospace control ; Algorithms ; Banks ; Computation ; Computational modeling ; Covariance ; Covariance matrix ; Kalman filters ; Matched filters ; Mathematical analysis ; Matrices ; Matrix methods ; Military computing ; Nonlinear filters ; Standard deviation ; State estimation ; Studies ; System testing</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.114-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</citedby><cites>FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/826316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/826316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanlon, P.D.</creatorcontrib><creatorcontrib>Maybeck, P.S.</creatorcontrib><title>Characterization of Kalman filter residuals in the presence of mismodeling</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.</description><subject>Adaptive estimation</subject><subject>Aerospace control</subject><subject>Algorithms</subject><subject>Banks</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Covariance</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Military computing</subject><subject>Nonlinear filters</subject><subject>Standard deviation</subject><subject>State estimation</subject><subject>Studies</subject><subject>System testing</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0k1LxDAQBuAgCq6r4NlT8SBeqpmk-TrK4rfgRc8lTSeapduuSXvQX2-XFQUPrqcwMw8vSRhCDoGeAVBzrs40kxzkFpmAECo3kvJtMqEUdG6YgF2yl9J8LAtd8Am5m73aaF2PMXzYPnRt1vns3jYL22Y-NGM_i5hCPdgmZaHN-lfMlmMHW4crughp0dXYhPZln-z4UeHB1zklz1eXT7Ob_OHx-nZ28ZC7Qpg-9wqqympAY4uKC62FrEBS56qaVd7UzljlmVQ1AyhqWwl03qKglntTgAY-JSfr3GXs3gZMfTlewmHT2Ba7IZXMMCYk05uh1gUAl_-AYKShbDNUDAwI-BdUnK8ST_-EIBUwzqRcZR7_ovNuiO341eX4EK05Y_CT52KXUkRfLmNY2PheAi1XC1Kqcr0gIz1a04CI3-xr-Amw4LPJ</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Hanlon, P.D.</creator><creator>Maybeck, P.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope><scope>KR7</scope></search><sort><creationdate>200001</creationdate><title>Characterization of Kalman filter residuals in the presence of mismodeling</title><author>Hanlon, P.D. ; Maybeck, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-f71bba81e9a4b358856b160ccbd2bf9dc9a7f267d2114dab5ecfae50a3f941813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive estimation</topic><topic>Aerospace control</topic><topic>Algorithms</topic><topic>Banks</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Covariance</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Military computing</topic><topic>Nonlinear filters</topic><topic>Standard deviation</topic><topic>State estimation</topic><topic>Studies</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanlon, P.D.</creatorcontrib><creatorcontrib>Maybeck, P.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanlon, P.D.</au><au>Maybeck, P.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Kalman filter residuals in the presence of mismodeling</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2000-01</date><risdate>2000</risdate><volume>36</volume><issue>1</issue><spage>114</spage><epage>131</epage><pages>114-131</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/7.826316</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2000-01, Vol.36 (1), p.114-131
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_journals_884883221
source IEEE Electronic Library (IEL)
subjects Adaptive estimation
Aerospace control
Algorithms
Banks
Computation
Computational modeling
Covariance
Covariance matrix
Kalman filters
Matched filters
Mathematical analysis
Matrices
Matrix methods
Military computing
Nonlinear filters
Standard deviation
State estimation
Studies
System testing
title Characterization of Kalman filter residuals in the presence of mismodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Kalman%20filter%20residuals%20in%20the%20presence%20of%20mismodeling&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Hanlon,%20P.D.&rft.date=2000-01&rft.volume=36&rft.issue=1&rft.spage=114&rft.epage=131&rft.pages=114-131&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.826316&rft_dat=%3Cproquest_RIE%3E27217332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884883221&rft_id=info:pmid/&rft_ieee_id=826316&rfr_iscdi=true