An analytical approach to signal reconstruction using Gaussian approximations applied to randomly generated and flow cytometric data

This study introduces an analytical approach to signal reconstruction using Gaussian distributions. A major problem encountered in real-world data distributions is in the ability to accurately separate those data distributions that experience overlap. A first objective then is to develop a method of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2000-10, Vol.48 (10), p.2839-2849
Hauptverfasser: Adjouadi, M., Reyes, C., Vidal, P., Barreto, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2849
container_issue 10
container_start_page 2839
container_title IEEE transactions on signal processing
container_volume 48
creator Adjouadi, M.
Reyes, C.
Vidal, P.
Barreto, A.B.
description This study introduces an analytical approach to signal reconstruction using Gaussian distributions. A major problem encountered in real-world data distributions is in the ability to accurately separate those data distributions that experience overlap. A first objective then is to develop a method of determining accurately the characteristics of a given distribution even when it has been affected by another distribution that lies close to it. In addition, normally, two-dimensional (2-D) Gaussian distributions are described by means of a correlation coefficient, but in this case, a normal 2-D distribution will be assumed in a direction parallel to a reference axis and then rotated by some angle /spl theta/. This outcome will not affect the results in terms of the standard use of the correlation coefficient. In this study, an attempt is made to provide a highly accurate yet computationally inexpensive approach of resolving the problem of overlap as we seek the reconstruction of signals through Gaussian curve fitting. Implementation results are shown in support of this assertion.
doi_str_mv 10.1109/78.869034
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884882995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>869034</ieee_id><sourcerecordid>28428963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-77e898a91fa97decba25398f727ee579d9a3b808d126e7c825ae60a540d2a50c3</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxQdRsFYXbl0FEcXF1CSTr7ssRatQ6KaCu-E2c-eZMm_yTDLo2_cPbx7zUHChqyT3_M4lnNM0LwU_E4LDB-vOnAHeqUfNiQAlWq6seVzvXHetdvbb0-ZZznecC6XAnDT35zPDGad9CR4nhrtdiui_sxJZDpsqsEQ-zrmkxZcQZ7bkMG_YJS45B5xXw6-wxYOYD88p0HCwJ5yHuJ32bEMzJSx1WidsnOJP5vclbqmk4NmABZ83T0acMr04nqfN108fby4-t1fXl18uzq9a34EprbXkwCGIEcEO5G9R6g7caKUl0hYGwO7WcTcIach6JzWS4agVHyRq7rvT5t26t_75x0K59NuQPU0TzhSX3INQRkvFoZJv_0lKp6QD0_0ftEYKAFnB13-Bd3FJNeDcO6eckwC6Qu9XyKeYc6Kx36Wabdr3gveHfnvr-rXfyr45LsRcqxtr3j7kPwYFQgtRsVcrFojot3rc8QDC_a7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884882995</pqid></control><display><type>article</type><title>An analytical approach to signal reconstruction using Gaussian approximations applied to randomly generated and flow cytometric data</title><source>IEEE Electronic Library (IEL)</source><creator>Adjouadi, M. ; Reyes, C. ; Vidal, P. ; Barreto, A.B.</creator><creatorcontrib>Adjouadi, M. ; Reyes, C. ; Vidal, P. ; Barreto, A.B.</creatorcontrib><description>This study introduces an analytical approach to signal reconstruction using Gaussian distributions. A major problem encountered in real-world data distributions is in the ability to accurately separate those data distributions that experience overlap. A first objective then is to develop a method of determining accurately the characteristics of a given distribution even when it has been affected by another distribution that lies close to it. In addition, normally, two-dimensional (2-D) Gaussian distributions are described by means of a correlation coefficient, but in this case, a normal 2-D distribution will be assumed in a direction parallel to a reference axis and then rotated by some angle /spl theta/. This outcome will not affect the results in terms of the standard use of the correlation coefficient. In this study, an attempt is made to provide a highly accurate yet computationally inexpensive approach of resolving the problem of overlap as we seek the reconstruction of signals through Gaussian curve fitting. Implementation results are shown in support of this assertion.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.869034</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Correlation coefficients ; Curve fitting ; Data mining ; Detection, estimation, filtering, equalization, prediction ; Educational technology ; Exact sciences and technology ; Gaussian ; Gaussian approximation ; Gaussian distribution ; Information, signal and communications theory ; Mathematical analysis ; Normal distribution ; Signal analysis ; Signal and communications theory ; Signal generators ; Signal reconstruction ; Signal resolution ; Signal, noise ; Studies ; Telecommunications and information theory ; Two dimensional displays</subject><ispartof>IEEE transactions on signal processing, 2000-10, Vol.48 (10), p.2839-2849</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-77e898a91fa97decba25398f727ee579d9a3b808d126e7c825ae60a540d2a50c3</citedby><cites>FETCH-LOGICAL-c396t-77e898a91fa97decba25398f727ee579d9a3b808d126e7c825ae60a540d2a50c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/869034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/869034$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1491511$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adjouadi, M.</creatorcontrib><creatorcontrib>Reyes, C.</creatorcontrib><creatorcontrib>Vidal, P.</creatorcontrib><creatorcontrib>Barreto, A.B.</creatorcontrib><title>An analytical approach to signal reconstruction using Gaussian approximations applied to randomly generated and flow cytometric data</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This study introduces an analytical approach to signal reconstruction using Gaussian distributions. A major problem encountered in real-world data distributions is in the ability to accurately separate those data distributions that experience overlap. A first objective then is to develop a method of determining accurately the characteristics of a given distribution even when it has been affected by another distribution that lies close to it. In addition, normally, two-dimensional (2-D) Gaussian distributions are described by means of a correlation coefficient, but in this case, a normal 2-D distribution will be assumed in a direction parallel to a reference axis and then rotated by some angle /spl theta/. This outcome will not affect the results in terms of the standard use of the correlation coefficient. In this study, an attempt is made to provide a highly accurate yet computationally inexpensive approach of resolving the problem of overlap as we seek the reconstruction of signals through Gaussian curve fitting. Implementation results are shown in support of this assertion.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Correlation coefficients</subject><subject>Curve fitting</subject><subject>Data mining</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Educational technology</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Gaussian approximation</subject><subject>Gaussian distribution</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Normal distribution</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal generators</subject><subject>Signal reconstruction</subject><subject>Signal resolution</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Two dimensional displays</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1rFTEUxQdRsFYXbl0FEcXF1CSTr7ssRatQ6KaCu-E2c-eZMm_yTDLo2_cPbx7zUHChqyT3_M4lnNM0LwU_E4LDB-vOnAHeqUfNiQAlWq6seVzvXHetdvbb0-ZZznecC6XAnDT35zPDGad9CR4nhrtdiui_sxJZDpsqsEQ-zrmkxZcQZ7bkMG_YJS45B5xXw6-wxYOYD88p0HCwJ5yHuJ32bEMzJSx1WidsnOJP5vclbqmk4NmABZ83T0acMr04nqfN108fby4-t1fXl18uzq9a34EprbXkwCGIEcEO5G9R6g7caKUl0hYGwO7WcTcIach6JzWS4agVHyRq7rvT5t26t_75x0K59NuQPU0TzhSX3INQRkvFoZJv_0lKp6QD0_0ftEYKAFnB13-Bd3FJNeDcO6eckwC6Qu9XyKeYc6Kx36Wabdr3gveHfnvr-rXfyr45LsRcqxtr3j7kPwYFQgtRsVcrFojot3rc8QDC_a7g</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Adjouadi, M.</creator><creator>Reyes, C.</creator><creator>Vidal, P.</creator><creator>Barreto, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001001</creationdate><title>An analytical approach to signal reconstruction using Gaussian approximations applied to randomly generated and flow cytometric data</title><author>Adjouadi, M. ; Reyes, C. ; Vidal, P. ; Barreto, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-77e898a91fa97decba25398f727ee579d9a3b808d126e7c825ae60a540d2a50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Correlation coefficients</topic><topic>Curve fitting</topic><topic>Data mining</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Educational technology</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Gaussian approximation</topic><topic>Gaussian distribution</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Normal distribution</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal generators</topic><topic>Signal reconstruction</topic><topic>Signal resolution</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adjouadi, M.</creatorcontrib><creatorcontrib>Reyes, C.</creatorcontrib><creatorcontrib>Vidal, P.</creatorcontrib><creatorcontrib>Barreto, A.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adjouadi, M.</au><au>Reyes, C.</au><au>Vidal, P.</au><au>Barreto, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical approach to signal reconstruction using Gaussian approximations applied to randomly generated and flow cytometric data</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>10</issue><spage>2839</spage><epage>2849</epage><pages>2839-2849</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This study introduces an analytical approach to signal reconstruction using Gaussian distributions. A major problem encountered in real-world data distributions is in the ability to accurately separate those data distributions that experience overlap. A first objective then is to develop a method of determining accurately the characteristics of a given distribution even when it has been affected by another distribution that lies close to it. In addition, normally, two-dimensional (2-D) Gaussian distributions are described by means of a correlation coefficient, but in this case, a normal 2-D distribution will be assumed in a direction parallel to a reference axis and then rotated by some angle /spl theta/. This outcome will not affect the results in terms of the standard use of the correlation coefficient. In this study, an attempt is made to provide a highly accurate yet computationally inexpensive approach of resolving the problem of overlap as we seek the reconstruction of signals through Gaussian curve fitting. Implementation results are shown in support of this assertion.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.869034</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2000-10, Vol.48 (10), p.2839-2849
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_884882995
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation
Correlation coefficients
Curve fitting
Data mining
Detection, estimation, filtering, equalization, prediction
Educational technology
Exact sciences and technology
Gaussian
Gaussian approximation
Gaussian distribution
Information, signal and communications theory
Mathematical analysis
Normal distribution
Signal analysis
Signal and communications theory
Signal generators
Signal reconstruction
Signal resolution
Signal, noise
Studies
Telecommunications and information theory
Two dimensional displays
title An analytical approach to signal reconstruction using Gaussian approximations applied to randomly generated and flow cytometric data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20approach%20to%20signal%20reconstruction%20using%20Gaussian%20approximations%20applied%20to%20randomly%20generated%20and%20flow%20cytometric%20data&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Adjouadi,%20M.&rft.date=2000-10-01&rft.volume=48&rft.issue=10&rft.spage=2839&rft.epage=2849&rft.pages=2839-2849&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.869034&rft_dat=%3Cproquest_RIE%3E28428963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884882995&rft_id=info:pmid/&rft_ieee_id=869034&rfr_iscdi=true