Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition

This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2001-08, Vol.8 (8), p.221-224
Hauptverfasser: Pellom, B.L., Sarikaya, R., Hansen, J.H.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 8
container_start_page 221
container_title IEEE signal processing letters
container_volume 8
creator Pellom, B.L.
Sarikaya, R.
Hansen, J.H.L.
description This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.
doi_str_mv 10.1109/97.935736
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884554075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>935736</ieee_id><sourcerecordid>26751617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</originalsourceid><addsrcrecordid>eNqF0b1PAyEUAPCL0cRaHVydiIPG4Socx9doGqsmTVx0vlB4balXqHA3-N9Lc42Dg06Qx4-X91EUlwRPCMHqXomJokxQflSMCGOyrCgnx_mOBS6VwvK0OEtpgzGWRLJR4WY6dah1H9C6dQgWmbDd9Z3uXPCoA7P27rOHhJxHHnSE1JUe3Gq9CBEtdAKLUg6bNVrmgAm-c74PfUJpB_kzimDCyrt9tvPiZKnbBBeHc1y8zx7fps_l_PXpZfowLw3loispNbQWXC2ZkpzrmoGkRktsLLMWA7WE1BaqBadK1xVIKwWulFVMaiy5xnRc3A55dzHsS--arUsG2lZ7yJU1itSc5XFUWd78KStJ85QY-R9ywQgnIsPrX3AT-uhzu42UNWM1FiyjuwGZGFKKsGx20W11_GoIbvZLbJRohiVmezVYBwA_7vD4DZlpl1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884554075</pqid></control><display><type>article</type><title>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Pellom, B.L. ; Sarikaya, R. ; Hansen, J.H.L.</creator><creatorcontrib>Pellom, B.L. ; Sarikaya, R. ; Hansen, J.H.L.</creatorcontrib><description>This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/97.935736</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Binary search trees ; Computation ; Computational complexity ; Covariance matrix ; Distortion measurement ; Hidden Markov models ; Linear discriminant analysis ; Mathematical analysis ; Natural languages ; Nearest neighbor searches ; Partial differential equations ; Searching ; Speech recognition ; Studies ; Vectors ; Vectors (mathematics) ; Walls</subject><ispartof>IEEE signal processing letters, 2001-08, Vol.8 (8), p.221-224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</citedby><cites>FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/935736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/935736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pellom, B.L.</creatorcontrib><creatorcontrib>Sarikaya, R.</creatorcontrib><creatorcontrib>Hansen, J.H.L.</creatorcontrib><title>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.</description><subject>Algorithms</subject><subject>Binary search trees</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Covariance matrix</subject><subject>Distortion measurement</subject><subject>Hidden Markov models</subject><subject>Linear discriminant analysis</subject><subject>Mathematical analysis</subject><subject>Natural languages</subject><subject>Nearest neighbor searches</subject><subject>Partial differential equations</subject><subject>Searching</subject><subject>Speech recognition</subject><subject>Studies</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Walls</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0b1PAyEUAPCL0cRaHVydiIPG4Socx9doGqsmTVx0vlB4balXqHA3-N9Lc42Dg06Qx4-X91EUlwRPCMHqXomJokxQflSMCGOyrCgnx_mOBS6VwvK0OEtpgzGWRLJR4WY6dah1H9C6dQgWmbDd9Z3uXPCoA7P27rOHhJxHHnSE1JUe3Gq9CBEtdAKLUg6bNVrmgAm-c74PfUJpB_kzimDCyrt9tvPiZKnbBBeHc1y8zx7fps_l_PXpZfowLw3loispNbQWXC2ZkpzrmoGkRktsLLMWA7WE1BaqBadK1xVIKwWulFVMaiy5xnRc3A55dzHsS--arUsG2lZ7yJU1itSc5XFUWd78KStJ85QY-R9ywQgnIsPrX3AT-uhzu42UNWM1FiyjuwGZGFKKsGx20W11_GoIbvZLbJRohiVmezVYBwA_7vD4DZlpl1s</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Pellom, B.L.</creator><creator>Sarikaya, R.</creator><creator>Hansen, J.H.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</title><author>Pellom, B.L. ; Sarikaya, R. ; Hansen, J.H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Binary search trees</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Covariance matrix</topic><topic>Distortion measurement</topic><topic>Hidden Markov models</topic><topic>Linear discriminant analysis</topic><topic>Mathematical analysis</topic><topic>Natural languages</topic><topic>Nearest neighbor searches</topic><topic>Partial differential equations</topic><topic>Searching</topic><topic>Speech recognition</topic><topic>Studies</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellom, B.L.</creatorcontrib><creatorcontrib>Sarikaya, R.</creatorcontrib><creatorcontrib>Hansen, J.H.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pellom, B.L.</au><au>Sarikaya, R.</au><au>Hansen, J.H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2001-08-01</date><risdate>2001</risdate><volume>8</volume><issue>8</issue><spage>221</spage><epage>224</epage><pages>221-224</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/97.935736</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2001-08, Vol.8 (8), p.221-224
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_884554075
source IEEE Electronic Library (IEL)
subjects Algorithms
Binary search trees
Computation
Computational complexity
Covariance matrix
Distortion measurement
Hidden Markov models
Linear discriminant analysis
Mathematical analysis
Natural languages
Nearest neighbor searches
Partial differential equations
Searching
Speech recognition
Studies
Vectors
Vectors (mathematics)
Walls
title Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20likelihood%20computation%20techniques%20in%20nearest-neighbor%20based%20search%20for%20continuous%20speech%20recognition&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Pellom,%20B.L.&rft.date=2001-08-01&rft.volume=8&rft.issue=8&rft.spage=221&rft.epage=224&rft.pages=221-224&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/97.935736&rft_dat=%3Cproquest_RIE%3E26751617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884554075&rft_id=info:pmid/&rft_ieee_id=935736&rfr_iscdi=true