Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition
This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute s...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2001-08, Vol.8 (8), p.221-224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 8 |
container_start_page | 221 |
container_title | IEEE signal processing letters |
container_volume | 8 |
creator | Pellom, B.L. Sarikaya, R. Hansen, J.H.L. |
description | This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task. |
doi_str_mv | 10.1109/97.935736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884554075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>935736</ieee_id><sourcerecordid>26751617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</originalsourceid><addsrcrecordid>eNqF0b1PAyEUAPCL0cRaHVydiIPG4Socx9doGqsmTVx0vlB4balXqHA3-N9Lc42Dg06Qx4-X91EUlwRPCMHqXomJokxQflSMCGOyrCgnx_mOBS6VwvK0OEtpgzGWRLJR4WY6dah1H9C6dQgWmbDd9Z3uXPCoA7P27rOHhJxHHnSE1JUe3Gq9CBEtdAKLUg6bNVrmgAm-c74PfUJpB_kzimDCyrt9tvPiZKnbBBeHc1y8zx7fps_l_PXpZfowLw3loispNbQWXC2ZkpzrmoGkRktsLLMWA7WE1BaqBadK1xVIKwWulFVMaiy5xnRc3A55dzHsS--arUsG2lZ7yJU1itSc5XFUWd78KStJ85QY-R9ywQgnIsPrX3AT-uhzu42UNWM1FiyjuwGZGFKKsGx20W11_GoIbvZLbJRohiVmezVYBwA_7vD4DZlpl1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884554075</pqid></control><display><type>article</type><title>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Pellom, B.L. ; Sarikaya, R. ; Hansen, J.H.L.</creator><creatorcontrib>Pellom, B.L. ; Sarikaya, R. ; Hansen, J.H.L.</creatorcontrib><description>This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/97.935736</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Binary search trees ; Computation ; Computational complexity ; Covariance matrix ; Distortion measurement ; Hidden Markov models ; Linear discriminant analysis ; Mathematical analysis ; Natural languages ; Nearest neighbor searches ; Partial differential equations ; Searching ; Speech recognition ; Studies ; Vectors ; Vectors (mathematics) ; Walls</subject><ispartof>IEEE signal processing letters, 2001-08, Vol.8 (8), p.221-224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</citedby><cites>FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/935736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/935736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pellom, B.L.</creatorcontrib><creatorcontrib>Sarikaya, R.</creatorcontrib><creatorcontrib>Hansen, J.H.L.</creatorcontrib><title>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.</description><subject>Algorithms</subject><subject>Binary search trees</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Covariance matrix</subject><subject>Distortion measurement</subject><subject>Hidden Markov models</subject><subject>Linear discriminant analysis</subject><subject>Mathematical analysis</subject><subject>Natural languages</subject><subject>Nearest neighbor searches</subject><subject>Partial differential equations</subject><subject>Searching</subject><subject>Speech recognition</subject><subject>Studies</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Walls</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0b1PAyEUAPCL0cRaHVydiIPG4Socx9doGqsmTVx0vlB4balXqHA3-N9Lc42Dg06Qx4-X91EUlwRPCMHqXomJokxQflSMCGOyrCgnx_mOBS6VwvK0OEtpgzGWRLJR4WY6dah1H9C6dQgWmbDd9Z3uXPCoA7P27rOHhJxHHnSE1JUe3Gq9CBEtdAKLUg6bNVrmgAm-c74PfUJpB_kzimDCyrt9tvPiZKnbBBeHc1y8zx7fps_l_PXpZfowLw3loispNbQWXC2ZkpzrmoGkRktsLLMWA7WE1BaqBadK1xVIKwWulFVMaiy5xnRc3A55dzHsS--arUsG2lZ7yJU1itSc5XFUWd78KStJ85QY-R9ywQgnIsPrX3AT-uhzu42UNWM1FiyjuwGZGFKKsGx20W11_GoIbvZLbJRohiVmezVYBwA_7vD4DZlpl1s</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Pellom, B.L.</creator><creator>Sarikaya, R.</creator><creator>Hansen, J.H.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</title><author>Pellom, B.L. ; Sarikaya, R. ; Hansen, J.H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-33c34769f59866a45e83ca80cd5dd0e3d114de2b639a42e8d87029d958a086a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Binary search trees</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Covariance matrix</topic><topic>Distortion measurement</topic><topic>Hidden Markov models</topic><topic>Linear discriminant analysis</topic><topic>Mathematical analysis</topic><topic>Natural languages</topic><topic>Nearest neighbor searches</topic><topic>Partial differential equations</topic><topic>Searching</topic><topic>Speech recognition</topic><topic>Studies</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellom, B.L.</creatorcontrib><creatorcontrib>Sarikaya, R.</creatorcontrib><creatorcontrib>Hansen, J.H.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pellom, B.L.</au><au>Sarikaya, R.</au><au>Hansen, J.H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2001-08-01</date><risdate>2001</risdate><volume>8</volume><issue>8</issue><spage>221</spage><epage>224</epage><pages>221-224</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This paper describes two effective algorithms that reduce the computational complexity of state likelihood computation in mixture-based Gaussian speech recognition systems. We consider a baseline recognition system that uses nearest-neighbor search and partial distance elimination (PDE) to compute state likelihoods. The first algorithm exploits the high dependence exhibited among subsequent feature vectors to predict the best scoring mixture for each state. The method, termed best mixture prediction (BMP), leads to further speed improvement in the PDE technique. The second technique, termed feature component reordering (FCR), takes advantage of the variable contribution levels made to the final distortion score for each dimension of the feature and mean space vectors. The combination of two techniques with PDE reduces the computational time for likelihood computation by 29.8% over baseline likelihood computation. The algorithms are shown to yield the same accuracy level without further memory requirements for the November 1992 ARPA Wall Street Journal (WSJ) task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/97.935736</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2001-08, Vol.8 (8), p.221-224 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_884554075 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Binary search trees Computation Computational complexity Covariance matrix Distortion measurement Hidden Markov models Linear discriminant analysis Mathematical analysis Natural languages Nearest neighbor searches Partial differential equations Searching Speech recognition Studies Vectors Vectors (mathematics) Walls |
title | Fast likelihood computation techniques in nearest-neighbor based search for continuous speech recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20likelihood%20computation%20techniques%20in%20nearest-neighbor%20based%20search%20for%20continuous%20speech%20recognition&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Pellom,%20B.L.&rft.date=2001-08-01&rft.volume=8&rft.issue=8&rft.spage=221&rft.epage=224&rft.pages=221-224&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/97.935736&rft_dat=%3Cproquest_RIE%3E26751617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884554075&rft_id=info:pmid/&rft_ieee_id=935736&rfr_iscdi=true |