Effect of the Charge State (z = -1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au^sub 25^[S(CH^sub 2^)^sub 2^Ph]^sub 18^^sup z^ Clusters

Monodisperse ... (L = S(CH...)...Ph) and [n-Oct...N...][...] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2011-08, Vol.83 (16), p.6355
Hauptverfasser: Venzo, Alfonso, Antonello, Sabrina, Gascón, José A, Guryanov, Ivan, Leapman, Richard D, Perera, Neranjan V, Sousa, Alioscka, Zamuner, Martina, Zanella, Alessandro, Maran, Flavio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 6355
container_title Analytical chemistry (Washington)
container_volume 83
creator Venzo, Alfonso
Antonello, Sabrina
Gascón, José A
Guryanov, Ivan
Leapman, Richard D
Perera, Neranjan V
Sousa, Alioscka
Zamuner, Martina
Zanella, Alessandro
Maran, Flavio
description Monodisperse ... (L = S(CH...)...Ph) and [n-Oct...N...][...] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in a dissociative electron-transfer (ET) process, in the former case yielding [...][...]. As opposed to other reported redox methods, this dissociative ET approach is irreversible, easily controllable, and clean, particularly for NMR purposes, as no hydrogen atoms are introduced. By using this approach, the -1, 0, and +1 charge states of ... could be fully characterized by ...H and ...C NMR spectroscopy, using one- and two-dimensional techniques, in various solvents, and as a function of temperature. For all charge states, the NMR results and analysis nicely match recent structural findings about the presence of two different ligand populations in the capping monolayer, each resonance of the two ligand families displaying distinct NMR patterns. The radical nature of ... is particularly evident in the 1H and 13C NMR patterns of the inner ligands. The NMR behavior of radical ... was also simulated by DFT calculations, and the interplay between theory and experiments revealed a fundamental paramagnetic contribution coming from Fermi contact shifts. Interestingly, the NMR patterns of ... and ... were found to be quite similar, pointing to the latter cluster form as a diamagnetic species. (ProQuest: ... denotes formulae/symbols omitted.)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_884548159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431461471</sourcerecordid><originalsourceid>FETCH-proquest_journals_8845481593</originalsourceid><addsrcrecordid>eNqNjM1OwkAUhSdGEqr4DjeuINLkTqE4LlyYBsIGY8SdcchYbimkmalzZzY8iM9rRR7A1XdOzs-FSGSeYTpTKrsUCSJO0uwesS-umA-IUqKcJeJ7XlVUBnAVhJqgqI3fEayDCQTDIzxCKseAY7iTI3D21HmOZUPGw8rsLIV9Ca_Ezhpb0u_Lylm33XNLngmeoub4CVmu39fDYvln9OjMl_rjpKTSHVs4aiiayKGbDkSvMg3TzZnX4nYxfyuWaevdVyQOm4OL3nbRRqlpPlUyf5j8q_QDlL5UHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884548159</pqid></control><display><type>article</type><title>Effect of the Charge State (z = -1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au^sub 25^[S(CH^sub 2^)^sub 2^Ph]^sub 18^^sup z^ Clusters</title><source>ACS Publications</source><creator>Venzo, Alfonso ; Antonello, Sabrina ; Gascón, José A ; Guryanov, Ivan ; Leapman, Richard D ; Perera, Neranjan V ; Sousa, Alioscka ; Zamuner, Martina ; Zanella, Alessandro ; Maran, Flavio</creator><creatorcontrib>Venzo, Alfonso ; Antonello, Sabrina ; Gascón, José A ; Guryanov, Ivan ; Leapman, Richard D ; Perera, Neranjan V ; Sousa, Alioscka ; Zamuner, Martina ; Zanella, Alessandro ; Maran, Flavio</creatorcontrib><description>Monodisperse ... (L = S(CH...)...Ph) and [n-Oct...N...][...] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in a dissociative electron-transfer (ET) process, in the former case yielding [...][...]. As opposed to other reported redox methods, this dissociative ET approach is irreversible, easily controllable, and clean, particularly for NMR purposes, as no hydrogen atoms are introduced. By using this approach, the -1, 0, and +1 charge states of ... could be fully characterized by ...H and ...C NMR spectroscopy, using one- and two-dimensional techniques, in various solvents, and as a function of temperature. For all charge states, the NMR results and analysis nicely match recent structural findings about the presence of two different ligand populations in the capping monolayer, each resonance of the two ligand families displaying distinct NMR patterns. The radical nature of ... is particularly evident in the 1H and 13C NMR patterns of the inner ligands. The NMR behavior of radical ... was also simulated by DFT calculations, and the interplay between theory and experiments revealed a fundamental paramagnetic contribution coming from Fermi contact shifts. Interestingly, the NMR patterns of ... and ... were found to be quite similar, pointing to the latter cluster form as a diamagnetic species. (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Electron transfer ; Hydrogen ; NMR ; Nuclear magnetic resonance ; Solvents</subject><ispartof>Analytical chemistry (Washington), 2011-08, Vol.83 (16), p.6355</ispartof><rights>Copyright American Chemical Society Aug 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Venzo, Alfonso</creatorcontrib><creatorcontrib>Antonello, Sabrina</creatorcontrib><creatorcontrib>Gascón, José A</creatorcontrib><creatorcontrib>Guryanov, Ivan</creatorcontrib><creatorcontrib>Leapman, Richard D</creatorcontrib><creatorcontrib>Perera, Neranjan V</creatorcontrib><creatorcontrib>Sousa, Alioscka</creatorcontrib><creatorcontrib>Zamuner, Martina</creatorcontrib><creatorcontrib>Zanella, Alessandro</creatorcontrib><creatorcontrib>Maran, Flavio</creatorcontrib><title>Effect of the Charge State (z = -1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au^sub 25^[S(CH^sub 2^)^sub 2^Ph]^sub 18^^sup z^ Clusters</title><title>Analytical chemistry (Washington)</title><description>Monodisperse ... (L = S(CH...)...Ph) and [n-Oct...N...][...] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in a dissociative electron-transfer (ET) process, in the former case yielding [...][...]. As opposed to other reported redox methods, this dissociative ET approach is irreversible, easily controllable, and clean, particularly for NMR purposes, as no hydrogen atoms are introduced. By using this approach, the -1, 0, and +1 charge states of ... could be fully characterized by ...H and ...C NMR spectroscopy, using one- and two-dimensional techniques, in various solvents, and as a function of temperature. For all charge states, the NMR results and analysis nicely match recent structural findings about the presence of two different ligand populations in the capping monolayer, each resonance of the two ligand families displaying distinct NMR patterns. The radical nature of ... is particularly evident in the 1H and 13C NMR patterns of the inner ligands. The NMR behavior of radical ... was also simulated by DFT calculations, and the interplay between theory and experiments revealed a fundamental paramagnetic contribution coming from Fermi contact shifts. Interestingly, the NMR patterns of ... and ... were found to be quite similar, pointing to the latter cluster form as a diamagnetic species. (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Analytical chemistry</subject><subject>Electron transfer</subject><subject>Hydrogen</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Solvents</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNjM1OwkAUhSdGEqr4DjeuINLkTqE4LlyYBsIGY8SdcchYbimkmalzZzY8iM9rRR7A1XdOzs-FSGSeYTpTKrsUCSJO0uwesS-umA-IUqKcJeJ7XlVUBnAVhJqgqI3fEayDCQTDIzxCKseAY7iTI3D21HmOZUPGw8rsLIV9Ca_Ezhpb0u_Lylm33XNLngmeoub4CVmu39fDYvln9OjMl_rjpKTSHVs4aiiayKGbDkSvMg3TzZnX4nYxfyuWaevdVyQOm4OL3nbRRqlpPlUyf5j8q_QDlL5UHQ</recordid><startdate>20110815</startdate><enddate>20110815</enddate><creator>Venzo, Alfonso</creator><creator>Antonello, Sabrina</creator><creator>Gascón, José A</creator><creator>Guryanov, Ivan</creator><creator>Leapman, Richard D</creator><creator>Perera, Neranjan V</creator><creator>Sousa, Alioscka</creator><creator>Zamuner, Martina</creator><creator>Zanella, Alessandro</creator><creator>Maran, Flavio</creator><general>American Chemical Society</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20110815</creationdate><title>Effect of the Charge State (z = -1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au^sub 25^[S(CH^sub 2^)^sub 2^Ph]^sub 18^^sup z^ Clusters</title><author>Venzo, Alfonso ; Antonello, Sabrina ; Gascón, José A ; Guryanov, Ivan ; Leapman, Richard D ; Perera, Neranjan V ; Sousa, Alioscka ; Zamuner, Martina ; Zanella, Alessandro ; Maran, Flavio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_8845481593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Electron transfer</topic><topic>Hydrogen</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venzo, Alfonso</creatorcontrib><creatorcontrib>Antonello, Sabrina</creatorcontrib><creatorcontrib>Gascón, José A</creatorcontrib><creatorcontrib>Guryanov, Ivan</creatorcontrib><creatorcontrib>Leapman, Richard D</creatorcontrib><creatorcontrib>Perera, Neranjan V</creatorcontrib><creatorcontrib>Sousa, Alioscka</creatorcontrib><creatorcontrib>Zamuner, Martina</creatorcontrib><creatorcontrib>Zanella, Alessandro</creatorcontrib><creatorcontrib>Maran, Flavio</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venzo, Alfonso</au><au>Antonello, Sabrina</au><au>Gascón, José A</au><au>Guryanov, Ivan</au><au>Leapman, Richard D</au><au>Perera, Neranjan V</au><au>Sousa, Alioscka</au><au>Zamuner, Martina</au><au>Zanella, Alessandro</au><au>Maran, Flavio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Charge State (z = -1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au^sub 25^[S(CH^sub 2^)^sub 2^Ph]^sub 18^^sup z^ Clusters</atitle><jtitle>Analytical chemistry (Washington)</jtitle><date>2011-08-15</date><risdate>2011</risdate><volume>83</volume><issue>16</issue><spage>6355</spage><pages>6355-</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Monodisperse ... (L = S(CH...)...Ph) and [n-Oct...N...][...] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in a dissociative electron-transfer (ET) process, in the former case yielding [...][...]. As opposed to other reported redox methods, this dissociative ET approach is irreversible, easily controllable, and clean, particularly for NMR purposes, as no hydrogen atoms are introduced. By using this approach, the -1, 0, and +1 charge states of ... could be fully characterized by ...H and ...C NMR spectroscopy, using one- and two-dimensional techniques, in various solvents, and as a function of temperature. For all charge states, the NMR results and analysis nicely match recent structural findings about the presence of two different ligand populations in the capping monolayer, each resonance of the two ligand families displaying distinct NMR patterns. The radical nature of ... is particularly evident in the 1H and 13C NMR patterns of the inner ligands. The NMR behavior of radical ... was also simulated by DFT calculations, and the interplay between theory and experiments revealed a fundamental paramagnetic contribution coming from Fermi contact shifts. Interestingly, the NMR patterns of ... and ... were found to be quite similar, pointing to the latter cluster form as a diamagnetic species. (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>Washington</cop><pub>American Chemical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2011-08, Vol.83 (16), p.6355
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_884548159
source ACS Publications
subjects Analytical chemistry
Electron transfer
Hydrogen
NMR
Nuclear magnetic resonance
Solvents
title Effect of the Charge State (z = -1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au^sub 25^[S(CH^sub 2^)^sub 2^Ph]^sub 18^^sup z^ Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Charge%20State%20(z%20=%20-1,%200,%20+1)%20on%20the%20Nuclear%20Magnetic%20Resonance%20of%20Monodisperse%20Au%5Esub%2025%5E%5BS(CH%5Esub%202%5E)%5Esub%202%5EPh%5D%5Esub%2018%5E%5Esup%20z%5E%20Clusters&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Venzo,%20Alfonso&rft.date=2011-08-15&rft.volume=83&rft.issue=16&rft.spage=6355&rft.pages=6355-&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/&rft_dat=%3Cproquest%3E2431461471%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884548159&rft_id=info:pmid/&rfr_iscdi=true