On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"

For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2002-12, Vol.51 (12), p.1460-1461
Hauptverfasser: Geiselmann, W., Muller-Quade, J., Steinwandt, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1461
container_issue 12
container_start_page 1460
container_title IEEE transactions on computers
container_volume 51
creator Geiselmann, W.
Muller-Quade, J.
Steinwandt, R.
description For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.
doi_str_mv 10.1109/TC.2002.1146713
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884544918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1146713</ieee_id><sourcerecordid>2431430761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxUVpoK6Tcw69CB-a9rCxvna1OhqTuIFALs5ZaLWjVma_ImlJ_d9XxoZCDz3NvJnfGxgeQreU3FNK1Hq_vWeEsCxEJSn_gBa0LGWhVFl9RAtCaF0oLsgn9DnGAyGkYkQt0NvLgFcbPMA7DjAFiDAkk_w44NFh6KDPOp565wefIBfo2oh3j9_YOs4T7tff8fE088NPHHvTddiO_dTBb5-O2ASffvWQvMXWBzv7FFfX6MqZLsLNpS7R6-PDfvujeH7ZPW03z4UVQqQC2soRSxsmnZTOlk1ra960hDal42UjqaGcSTAWGPBW1ZV0NTSqpNbktXB8ie7Od6cwvs0Qk-59tNB1ZoBxjloRqQSnFcvk1_-SrBaCcy4yuPoHPIxzGPIXuq5FKYSidYbWZ8iGMcYATk_B9yYcNSX6lJTeb_UpKX1JKju-nB0eAP7Sl-0fJDCPCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884544918</pqid></control><display><type>article</type><title>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</title><source>IEEE Electronic Library (IEL)</source><creator>Geiselmann, W. ; Muller-Quade, J. ; Steinwandt, R.</creator><creatorcontrib>Geiselmann, W. ; Muller-Quade, J. ; Steinwandt, R.</creatorcontrib><description>For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2002.1146713</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arithmetic ; Circuits ; Complexity ; Galois fields ; Hardware ; Mathematical analysis ; Optimization ; Polynomials ; Representations ; Reproduction ; Very large scale integration</subject><ispartof>IEEE transactions on computers, 2002-12, Vol.51 (12), p.1460-1461</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</citedby><cites>FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1146713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1146713$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Geiselmann, W.</creatorcontrib><creatorcontrib>Muller-Quade, J.</creatorcontrib><creatorcontrib>Steinwandt, R.</creatorcontrib><title>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.</description><subject>Arithmetic</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Galois fields</subject><subject>Hardware</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Reproduction</subject><subject>Very large scale integration</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1rGzEQxUVpoK6Tcw69CB-a9rCxvna1OhqTuIFALs5ZaLWjVma_ImlJ_d9XxoZCDz3NvJnfGxgeQreU3FNK1Hq_vWeEsCxEJSn_gBa0LGWhVFl9RAtCaF0oLsgn9DnGAyGkYkQt0NvLgFcbPMA7DjAFiDAkk_w44NFh6KDPOp565wefIBfo2oh3j9_YOs4T7tff8fE088NPHHvTddiO_dTBb5-O2ASffvWQvMXWBzv7FFfX6MqZLsLNpS7R6-PDfvujeH7ZPW03z4UVQqQC2soRSxsmnZTOlk1ra960hDal42UjqaGcSTAWGPBW1ZV0NTSqpNbktXB8ie7Od6cwvs0Qk-59tNB1ZoBxjloRqQSnFcvk1_-SrBaCcy4yuPoHPIxzGPIXuq5FKYSidYbWZ8iGMcYATk_B9yYcNSX6lJTeb_UpKX1JKju-nB0eAP7Sl-0fJDCPCg</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Geiselmann, W.</creator><creator>Muller-Quade, J.</creator><creator>Steinwandt, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021201</creationdate><title>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</title><author>Geiselmann, W. ; Muller-Quade, J. ; Steinwandt, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Arithmetic</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Galois fields</topic><topic>Hardware</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Reproduction</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiselmann, W.</creatorcontrib><creatorcontrib>Muller-Quade, J.</creatorcontrib><creatorcontrib>Steinwandt, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geiselmann, W.</au><au>Muller-Quade, J.</au><au>Steinwandt, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2002-12-01</date><risdate>2002</risdate><volume>51</volume><issue>12</issue><spage>1460</spage><epage>1461</epage><pages>1460-1461</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2002.1146713</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2002-12, Vol.51 (12), p.1460-1461
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_journals_884544918
source IEEE Electronic Library (IEL)
subjects Arithmetic
Circuits
Complexity
Galois fields
Hardware
Mathematical analysis
Optimization
Polynomials
Representations
Reproduction
Very large scale integration
title On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20%22A%20new%20representation%20of%20elements%20of%20finite%20fields%20GF(2/sup%20m/)%20yielding%20small%20complexity%20arithmetic%20circuits%22&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Geiselmann,%20W.&rft.date=2002-12-01&rft.volume=51&rft.issue=12&rft.spage=1460&rft.epage=1461&rft.pages=1460-1461&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2002.1146713&rft_dat=%3Cproquest_RIE%3E2431430761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884544918&rft_id=info:pmid/&rft_ieee_id=1146713&rfr_iscdi=true