On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"
For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEE...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2002-12, Vol.51 (12), p.1460-1461 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1461 |
---|---|
container_issue | 12 |
container_start_page | 1460 |
container_title | IEEE transactions on computers |
container_volume | 51 |
creator | Geiselmann, W. Muller-Quade, J. Steinwandt, R. |
description | For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly. |
doi_str_mv | 10.1109/TC.2002.1146713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884544918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1146713</ieee_id><sourcerecordid>2431430761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxUVpoK6Tcw69CB-a9rCxvna1OhqTuIFALs5ZaLWjVma_ImlJ_d9XxoZCDz3NvJnfGxgeQreU3FNK1Hq_vWeEsCxEJSn_gBa0LGWhVFl9RAtCaF0oLsgn9DnGAyGkYkQt0NvLgFcbPMA7DjAFiDAkk_w44NFh6KDPOp565wefIBfo2oh3j9_YOs4T7tff8fE088NPHHvTddiO_dTBb5-O2ASffvWQvMXWBzv7FFfX6MqZLsLNpS7R6-PDfvujeH7ZPW03z4UVQqQC2soRSxsmnZTOlk1ra960hDal42UjqaGcSTAWGPBW1ZV0NTSqpNbktXB8ie7Od6cwvs0Qk-59tNB1ZoBxjloRqQSnFcvk1_-SrBaCcy4yuPoHPIxzGPIXuq5FKYSidYbWZ8iGMcYATk_B9yYcNSX6lJTeb_UpKX1JKju-nB0eAP7Sl-0fJDCPCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884544918</pqid></control><display><type>article</type><title>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</title><source>IEEE Electronic Library (IEL)</source><creator>Geiselmann, W. ; Muller-Quade, J. ; Steinwandt, R.</creator><creatorcontrib>Geiselmann, W. ; Muller-Quade, J. ; Steinwandt, R.</creatorcontrib><description>For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2002.1146713</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arithmetic ; Circuits ; Complexity ; Galois fields ; Hardware ; Mathematical analysis ; Optimization ; Polynomials ; Representations ; Reproduction ; Very large scale integration</subject><ispartof>IEEE transactions on computers, 2002-12, Vol.51 (12), p.1460-1461</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</citedby><cites>FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1146713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1146713$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Geiselmann, W.</creatorcontrib><creatorcontrib>Muller-Quade, J.</creatorcontrib><creatorcontrib>Steinwandt, R.</creatorcontrib><title>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.</description><subject>Arithmetic</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Galois fields</subject><subject>Hardware</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Reproduction</subject><subject>Very large scale integration</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1rGzEQxUVpoK6Tcw69CB-a9rCxvna1OhqTuIFALs5ZaLWjVma_ImlJ_d9XxoZCDz3NvJnfGxgeQreU3FNK1Hq_vWeEsCxEJSn_gBa0LGWhVFl9RAtCaF0oLsgn9DnGAyGkYkQt0NvLgFcbPMA7DjAFiDAkk_w44NFh6KDPOp565wefIBfo2oh3j9_YOs4T7tff8fE088NPHHvTddiO_dTBb5-O2ASffvWQvMXWBzv7FFfX6MqZLsLNpS7R6-PDfvujeH7ZPW03z4UVQqQC2soRSxsmnZTOlk1ra960hDal42UjqaGcSTAWGPBW1ZV0NTSqpNbktXB8ie7Od6cwvs0Qk-59tNB1ZoBxjloRqQSnFcvk1_-SrBaCcy4yuPoHPIxzGPIXuq5FKYSidYbWZ8iGMcYATk_B9yYcNSX6lJTeb_UpKX1JKju-nB0eAP7Sl-0fJDCPCg</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Geiselmann, W.</creator><creator>Muller-Quade, J.</creator><creator>Steinwandt, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021201</creationdate><title>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</title><author>Geiselmann, W. ; Muller-Quade, J. ; Steinwandt, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ed6f0c1b27f77fc5bdc83bd01b5f35b71a1327eace2e3d9867f8eb951ca35b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Arithmetic</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Galois fields</topic><topic>Hardware</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Reproduction</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiselmann, W.</creatorcontrib><creatorcontrib>Muller-Quade, J.</creatorcontrib><creatorcontrib>Steinwandt, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geiselmann, W.</au><au>Muller-Quade, J.</au><au>Steinwandt, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits"</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2002-12-01</date><risdate>2002</risdate><volume>51</volume><issue>12</issue><spage>1460</spage><epage>1461</epage><pages>1460-1461</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>For original article see G. Drolet, ibid., vol. 47, no. 9, p. 938-946, (Sept 1998). We characterize the smallest n with GF(2)[X]/(X/sup n/ + 1) containing an isomorphic copy of GF(2/sup m/). This characterization shows that the representation of finite fields described in a previous issue of the IEEE Transactions on Computers is not "optimal" as claimed. The representation considered there can often be improved significantly.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2002.1146713</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2002-12, Vol.51 (12), p.1460-1461 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_journals_884544918 |
source | IEEE Electronic Library (IEL) |
subjects | Arithmetic Circuits Complexity Galois fields Hardware Mathematical analysis Optimization Polynomials Representations Reproduction Very large scale integration |
title | On "A new representation of elements of finite fields GF(2/sup m/) yielding small complexity arithmetic circuits" |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20%22A%20new%20representation%20of%20elements%20of%20finite%20fields%20GF(2/sup%20m/)%20yielding%20small%20complexity%20arithmetic%20circuits%22&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Geiselmann,%20W.&rft.date=2002-12-01&rft.volume=51&rft.issue=12&rft.spage=1460&rft.epage=1461&rft.pages=1460-1461&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2002.1146713&rft_dat=%3Cproquest_RIE%3E2431430761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884544918&rft_id=info:pmid/&rft_ieee_id=1146713&rfr_iscdi=true |