An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method

It is a very important, but difficult, task to calculate the multiple dc solutions in circuit simulations. In this paper, we show a very simple SFICE-oriented Newton homotopy method which can efficiently find out the multiple de solutions. In the paper, we show our solution curve-tracing algorithm b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2002-03, Vol.21 (3), p.337-348
Hauptverfasser: Ushida, A., Yamagami, Y., Nishio, Y., Kinouchi, I., Inoue, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 3
container_start_page 337
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 21
creator Ushida, A.
Yamagami, Y.
Nishio, Y.
Kinouchi, I.
Inoue, Y.
description It is a very important, but difficult, task to calculate the multiple dc solutions in circuit simulations. In this paper, we show a very simple SFICE-oriented Newton homotopy method which can efficiently find out the multiple de solutions. In the paper, we show our solution curve-tracing algorithm based on the arc-length method and the Newton homotopy method. We will also prove an important theorem about how many variables should be chosen to implement our algorithm. It verifies that our simulator can be efficiently applied even if the circuit scales are relatively large. In Section III, we show that our Newton homotopy method is implemented by the transient analysis of SPICE. Thus, we do not need to formulate a troublesome circuit equation or the Jacobian matrix. Finally, applying our method to solve many important benchmark problems, all the solutions for the transistor circuits could be found on each homotopy path. Thus, our simulator can be efficiently applied to calculate the multiple dc solutions and perhaps all the solutions.
doi_str_mv 10.1109/43.986427
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884472608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>986427</ieee_id><sourcerecordid>907964973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-3915238c2f068a9c0a2022b86da737eaaf8d81a196a849819dc032ec6fce99483</originalsourceid><addsrcrecordid>eNp90TtPwzAQAGALgUR5DKxMFgOIIcWvxvZYhfKQECABc2Scc-uSxCV2hPrvSVXEwMB00t13dzodQieUjCkl-krwsVa5YHIHjajmMhN0QnfRiDCpMkIk2UcHMS4JoWLC9Ah9TFsMznnroU3Y1PPQ-bRosAsddr6tfDvHTV8nv6oBXxc4hrpPPrQRv5sIFQ4tTgvAL8_3xSwbeocpQ_YRvtJQWYQmpLBa4wbSIlRHaM-ZOsLxTzxEbzez1-Iue3i6vS-mD5kVXKaMazphXFnmSK6MtsQwwti7yisjuQRjnKoUNVTnRgmtqK4s4Qxs7ixoLRQ_RBfbuasufPYQU9n4aKGuTQuhj6UmUudCSz7I838lkxMpdL6BZ3_gMvRdO1xRKiWEZDnZ7L3cItuFGDtw5arzjenWJSXl5jul4OX2O4M93VoPAL_up_gNAkCJVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884472608</pqid></control><display><type>article</type><title>An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method</title><source>IEEE Electronic Library (IEL)</source><creator>Ushida, A. ; Yamagami, Y. ; Nishio, Y. ; Kinouchi, I. ; Inoue, Y.</creator><creatorcontrib>Ushida, A. ; Yamagami, Y. ; Nishio, Y. ; Kinouchi, I. ; Inoue, Y.</creatorcontrib><description>It is a very important, but difficult, task to calculate the multiple dc solutions in circuit simulations. In this paper, we show a very simple SFICE-oriented Newton homotopy method which can efficiently find out the multiple de solutions. In the paper, we show our solution curve-tracing algorithm based on the arc-length method and the Newton homotopy method. We will also prove an important theorem about how many variables should be chosen to implement our algorithm. It verifies that our simulator can be efficiently applied even if the circuit scales are relatively large. In Section III, we show that our Newton homotopy method is implemented by the transient analysis of SPICE. Thus, we do not need to formulate a troublesome circuit equation or the Jacobian matrix. Finally, applying our method to solve many important benchmark problems, all the solutions for the transistor circuits could be found on each homotopy path. Thus, our simulator can be efficiently applied to calculate the multiple dc solutions and perhaps all the solutions.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.986427</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analog circuits ; Application software ; Circuit simulation ; Circuits ; Computer simulation ; Direct current ; Flip-flops ; Jacobian matrices ; Jacobian matrix ; Large-scale systems ; Mathematical analysis ; Mathematical models ; Nonlinear equations ; Piecewise linear techniques ; SPICE ; Studies ; Transient analysis ; Transistor circuits</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2002-03, Vol.21 (3), p.337-348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-3915238c2f068a9c0a2022b86da737eaaf8d81a196a849819dc032ec6fce99483</citedby><cites>FETCH-LOGICAL-c437t-3915238c2f068a9c0a2022b86da737eaaf8d81a196a849819dc032ec6fce99483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/986427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/986427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ushida, A.</creatorcontrib><creatorcontrib>Yamagami, Y.</creatorcontrib><creatorcontrib>Nishio, Y.</creatorcontrib><creatorcontrib>Kinouchi, I.</creatorcontrib><creatorcontrib>Inoue, Y.</creatorcontrib><title>An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>It is a very important, but difficult, task to calculate the multiple dc solutions in circuit simulations. In this paper, we show a very simple SFICE-oriented Newton homotopy method which can efficiently find out the multiple de solutions. In the paper, we show our solution curve-tracing algorithm based on the arc-length method and the Newton homotopy method. We will also prove an important theorem about how many variables should be chosen to implement our algorithm. It verifies that our simulator can be efficiently applied even if the circuit scales are relatively large. In Section III, we show that our Newton homotopy method is implemented by the transient analysis of SPICE. Thus, we do not need to formulate a troublesome circuit equation or the Jacobian matrix. Finally, applying our method to solve many important benchmark problems, all the solutions for the transistor circuits could be found on each homotopy path. Thus, our simulator can be efficiently applied to calculate the multiple dc solutions and perhaps all the solutions.</description><subject>Algorithms</subject><subject>Analog circuits</subject><subject>Application software</subject><subject>Circuit simulation</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Direct current</subject><subject>Flip-flops</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Large-scale systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Piecewise linear techniques</subject><subject>SPICE</subject><subject>Studies</subject><subject>Transient analysis</subject><subject>Transistor circuits</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90TtPwzAQAGALgUR5DKxMFgOIIcWvxvZYhfKQECABc2Scc-uSxCV2hPrvSVXEwMB00t13dzodQieUjCkl-krwsVa5YHIHjajmMhN0QnfRiDCpMkIk2UcHMS4JoWLC9Ah9TFsMznnroU3Y1PPQ-bRosAsddr6tfDvHTV8nv6oBXxc4hrpPPrQRv5sIFQ4tTgvAL8_3xSwbeocpQ_YRvtJQWYQmpLBa4wbSIlRHaM-ZOsLxTzxEbzez1-Iue3i6vS-mD5kVXKaMazphXFnmSK6MtsQwwti7yisjuQRjnKoUNVTnRgmtqK4s4Qxs7ixoLRQ_RBfbuasufPYQU9n4aKGuTQuhj6UmUudCSz7I838lkxMpdL6BZ3_gMvRdO1xRKiWEZDnZ7L3cItuFGDtw5arzjenWJSXl5jul4OX2O4M93VoPAL_up_gNAkCJVg</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Ushida, A.</creator><creator>Yamagami, Y.</creator><creator>Nishio, Y.</creator><creator>Kinouchi, I.</creator><creator>Inoue, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020301</creationdate><title>An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method</title><author>Ushida, A. ; Yamagami, Y. ; Nishio, Y. ; Kinouchi, I. ; Inoue, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-3915238c2f068a9c0a2022b86da737eaaf8d81a196a849819dc032ec6fce99483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Analog circuits</topic><topic>Application software</topic><topic>Circuit simulation</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Direct current</topic><topic>Flip-flops</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Large-scale systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Piecewise linear techniques</topic><topic>SPICE</topic><topic>Studies</topic><topic>Transient analysis</topic><topic>Transistor circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ushida, A.</creatorcontrib><creatorcontrib>Yamagami, Y.</creatorcontrib><creatorcontrib>Nishio, Y.</creatorcontrib><creatorcontrib>Kinouchi, I.</creatorcontrib><creatorcontrib>Inoue, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ushida, A.</au><au>Yamagami, Y.</au><au>Nishio, Y.</au><au>Kinouchi, I.</au><au>Inoue, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2002-03-01</date><risdate>2002</risdate><volume>21</volume><issue>3</issue><spage>337</spage><epage>348</epage><pages>337-348</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>It is a very important, but difficult, task to calculate the multiple dc solutions in circuit simulations. In this paper, we show a very simple SFICE-oriented Newton homotopy method which can efficiently find out the multiple de solutions. In the paper, we show our solution curve-tracing algorithm based on the arc-length method and the Newton homotopy method. We will also prove an important theorem about how many variables should be chosen to implement our algorithm. It verifies that our simulator can be efficiently applied even if the circuit scales are relatively large. In Section III, we show that our Newton homotopy method is implemented by the transient analysis of SPICE. Thus, we do not need to formulate a troublesome circuit equation or the Jacobian matrix. Finally, applying our method to solve many important benchmark problems, all the solutions for the transistor circuits could be found on each homotopy path. Thus, our simulator can be efficiently applied to calculate the multiple dc solutions and perhaps all the solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/43.986427</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2002-03, Vol.21 (3), p.337-348
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_884472608
source IEEE Electronic Library (IEL)
subjects Algorithms
Analog circuits
Application software
Circuit simulation
Circuits
Computer simulation
Direct current
Flip-flops
Jacobian matrices
Jacobian matrix
Large-scale systems
Mathematical analysis
Mathematical models
Nonlinear equations
Piecewise linear techniques
SPICE
Studies
Transient analysis
Transistor circuits
title An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20algorithm%20for%20finding%20multiple%20DC%20solutions%20based%20on%20the%20SPICE-oriented%20Newton%20homotopy%20method&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Ushida,%20A.&rft.date=2002-03-01&rft.volume=21&rft.issue=3&rft.spage=337&rft.epage=348&rft.pages=337-348&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.986427&rft_dat=%3Cproquest_RIE%3E907964973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884472608&rft_id=info:pmid/&rft_ieee_id=986427&rfr_iscdi=true