Efficient three-dimensional imaging from a small cylindrical aperture
Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging alg...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2002-07, Vol.49 (7), p.861-870 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 870 |
---|---|
container_issue | 7 |
container_start_page | 861 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 49 |
creator | Haun, M.A. Jones, D.L. O'Brien, W.D. |
description | Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics. |
doi_str_mv | 10.1109/TUFFC.2002.1020156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884439896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1020156</ieee_id><sourcerecordid>71963976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</originalsourceid><addsrcrecordid>eNqF0U1rFEEQBuBGFLMm_gEFGQT1NGt39fcxLLsmEMglOQ-9PdWxw3ys3TOH_Ht73YGIB3Oqy1NvQb2EfGB0zRi13-_ud7vNGiiFNaNAmVSvyIpJkLWxUr4mK2qMrDll9Iy8y_mRUiaEhbfkjEFhVtAV2W5DiD7iMFXTz4RYt7HHIcdxcF0Ve_cQh4cqpLGvXJV713WVf-ri0KboC3AHTNOc8IK8Ca7L-H6Z5-R-t73bXNU3tz-uN5c3tReaTjVYw_heGqHEHixF1AFYMNAK650IHpRtFQiwzAVlwCjJqZNctlyjVi3wc_LtlHtI468Z89T0MXvsOjfgOOfGUm0Fp1wW-fW_UjOruNXqRQgGrAL7ciJodmyFF_j5H_g4zqn8MzfGCMGtscezcEI-jTknDM0hlXenp4bR5pjT_Gm3ObbbLO2WpU9L8rzvsX1eWeos4MsCXC79hOQGH_Oz49pwwVhxH08uIuJfl09nfgPv27Ko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884439896</pqid></control><display><type>article</type><title>Efficient three-dimensional imaging from a small cylindrical aperture</title><source>IEEE Electronic Library (IEL)</source><creator>Haun, M.A. ; Jones, D.L. ; O'Brien, W.D.</creator><creatorcontrib>Haun, M.A. ; Jones, D.L. ; O'Brien, W.D.</creatorcontrib><description>Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2002.1020156</identifier><identifier>PMID: 12152940</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Acoustical measurements and instrumentation ; Acoustics ; Algorithms ; Angular resolution ; Aperture ; Apertures ; Biological and medical sciences ; Computer Simulation ; Energy resolution ; Exact sciences and technology ; Focusing ; Fourier transforms ; Fundamental areas of phenomenology (including applications) ; Geometry ; High-resolution imaging ; Imaging ; Imaging, Three-Dimensional ; In vivo ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Miscellaneous. Technology ; Physics ; Probes ; Studies ; Transducers ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonography - instrumentation ; Wave propagation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2002-07, Vol.49 (7), p.861-870</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</citedby><cites>FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1020156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1020156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13783411$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12152940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haun, M.A.</creatorcontrib><creatorcontrib>Jones, D.L.</creatorcontrib><creatorcontrib>O'Brien, W.D.</creatorcontrib><title>Efficient three-dimensional imaging from a small cylindrical aperture</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.</description><subject>Acoustic signal processing</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Angular resolution</subject><subject>Aperture</subject><subject>Apertures</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>Focusing</subject><subject>Fourier transforms</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>High-resolution imaging</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>In vivo</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Physics</subject><subject>Probes</subject><subject>Studies</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography - instrumentation</subject><subject>Wave propagation</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1rFEEQBuBGFLMm_gEFGQT1NGt39fcxLLsmEMglOQ-9PdWxw3ys3TOH_Ht73YGIB3Oqy1NvQb2EfGB0zRi13-_ud7vNGiiFNaNAmVSvyIpJkLWxUr4mK2qMrDll9Iy8y_mRUiaEhbfkjEFhVtAV2W5DiD7iMFXTz4RYt7HHIcdxcF0Ve_cQh4cqpLGvXJV713WVf-ri0KboC3AHTNOc8IK8Ca7L-H6Z5-R-t73bXNU3tz-uN5c3tReaTjVYw_heGqHEHixF1AFYMNAK650IHpRtFQiwzAVlwCjJqZNctlyjVi3wc_LtlHtI468Z89T0MXvsOjfgOOfGUm0Fp1wW-fW_UjOruNXqRQgGrAL7ciJodmyFF_j5H_g4zqn8MzfGCMGtscezcEI-jTknDM0hlXenp4bR5pjT_Gm3ObbbLO2WpU9L8rzvsX1eWeos4MsCXC79hOQGH_Oz49pwwVhxH08uIuJfl09nfgPv27Ko</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Haun, M.A.</creator><creator>Jones, D.L.</creator><creator>O'Brien, W.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Efficient three-dimensional imaging from a small cylindrical aperture</title><author>Haun, M.A. ; Jones, D.L. ; O'Brien, W.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acoustic signal processing</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Angular resolution</topic><topic>Aperture</topic><topic>Apertures</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>Focusing</topic><topic>Fourier transforms</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>High-resolution imaging</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>In vivo</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Physics</topic><topic>Probes</topic><topic>Studies</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography - instrumentation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haun, M.A.</creatorcontrib><creatorcontrib>Jones, D.L.</creatorcontrib><creatorcontrib>O'Brien, W.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haun, M.A.</au><au>Jones, D.L.</au><au>O'Brien, W.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient three-dimensional imaging from a small cylindrical aperture</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>49</volume><issue>7</issue><spage>861</spage><epage>870</epage><pages>861-870</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12152940</pmid><doi>10.1109/TUFFC.2002.1020156</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2002-07, Vol.49 (7), p.861-870 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_journals_884439896 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic signal processing Acoustical measurements and instrumentation Acoustics Algorithms Angular resolution Aperture Apertures Biological and medical sciences Computer Simulation Energy resolution Exact sciences and technology Focusing Fourier transforms Fundamental areas of phenomenology (including applications) Geometry High-resolution imaging Imaging Imaging, Three-Dimensional In vivo Investigative techniques, diagnostic techniques (general aspects) Medical sciences Miscellaneous. Technology Physics Probes Studies Transducers Ultrasonic imaging Ultrasonic investigative techniques Ultrasonography - instrumentation Wave propagation |
title | Efficient three-dimensional imaging from a small cylindrical aperture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20three-dimensional%20imaging%20from%20a%20small%20cylindrical%20aperture&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Haun,%20M.A.&rft.date=2002-07-01&rft.volume=49&rft.issue=7&rft.spage=861&rft.epage=870&rft.pages=861-870&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2002.1020156&rft_dat=%3Cproquest_RIE%3E71963976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884439896&rft_id=info:pmid/12152940&rft_ieee_id=1020156&rfr_iscdi=true |