Efficient three-dimensional imaging from a small cylindrical aperture

Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2002-07, Vol.49 (7), p.861-870
Hauptverfasser: Haun, M.A., Jones, D.L., O'Brien, W.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870
container_issue 7
container_start_page 861
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 49
creator Haun, M.A.
Jones, D.L.
O'Brien, W.D.
description Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.
doi_str_mv 10.1109/TUFFC.2002.1020156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884439896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1020156</ieee_id><sourcerecordid>71963976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</originalsourceid><addsrcrecordid>eNqF0U1rFEEQBuBGFLMm_gEFGQT1NGt39fcxLLsmEMglOQ-9PdWxw3ys3TOH_Ht73YGIB3Oqy1NvQb2EfGB0zRi13-_ud7vNGiiFNaNAmVSvyIpJkLWxUr4mK2qMrDll9Iy8y_mRUiaEhbfkjEFhVtAV2W5DiD7iMFXTz4RYt7HHIcdxcF0Ve_cQh4cqpLGvXJV713WVf-ri0KboC3AHTNOc8IK8Ca7L-H6Z5-R-t73bXNU3tz-uN5c3tReaTjVYw_heGqHEHixF1AFYMNAK650IHpRtFQiwzAVlwCjJqZNctlyjVi3wc_LtlHtI468Z89T0MXvsOjfgOOfGUm0Fp1wW-fW_UjOruNXqRQgGrAL7ciJodmyFF_j5H_g4zqn8MzfGCMGtscezcEI-jTknDM0hlXenp4bR5pjT_Gm3ObbbLO2WpU9L8rzvsX1eWeos4MsCXC79hOQGH_Oz49pwwVhxH08uIuJfl09nfgPv27Ko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884439896</pqid></control><display><type>article</type><title>Efficient three-dimensional imaging from a small cylindrical aperture</title><source>IEEE Electronic Library (IEL)</source><creator>Haun, M.A. ; Jones, D.L. ; O'Brien, W.D.</creator><creatorcontrib>Haun, M.A. ; Jones, D.L. ; O'Brien, W.D.</creatorcontrib><description>Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2002.1020156</identifier><identifier>PMID: 12152940</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Acoustical measurements and instrumentation ; Acoustics ; Algorithms ; Angular resolution ; Aperture ; Apertures ; Biological and medical sciences ; Computer Simulation ; Energy resolution ; Exact sciences and technology ; Focusing ; Fourier transforms ; Fundamental areas of phenomenology (including applications) ; Geometry ; High-resolution imaging ; Imaging ; Imaging, Three-Dimensional ; In vivo ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Miscellaneous. Technology ; Physics ; Probes ; Studies ; Transducers ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonography - instrumentation ; Wave propagation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2002-07, Vol.49 (7), p.861-870</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</citedby><cites>FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1020156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1020156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13783411$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12152940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haun, M.A.</creatorcontrib><creatorcontrib>Jones, D.L.</creatorcontrib><creatorcontrib>O'Brien, W.D.</creatorcontrib><title>Efficient three-dimensional imaging from a small cylindrical aperture</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.</description><subject>Acoustic signal processing</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Angular resolution</subject><subject>Aperture</subject><subject>Apertures</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>Focusing</subject><subject>Fourier transforms</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>High-resolution imaging</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>In vivo</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Physics</subject><subject>Probes</subject><subject>Studies</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography - instrumentation</subject><subject>Wave propagation</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1rFEEQBuBGFLMm_gEFGQT1NGt39fcxLLsmEMglOQ-9PdWxw3ys3TOH_Ht73YGIB3Oqy1NvQb2EfGB0zRi13-_ud7vNGiiFNaNAmVSvyIpJkLWxUr4mK2qMrDll9Iy8y_mRUiaEhbfkjEFhVtAV2W5DiD7iMFXTz4RYt7HHIcdxcF0Ve_cQh4cqpLGvXJV713WVf-ri0KboC3AHTNOc8IK8Ca7L-H6Z5-R-t73bXNU3tz-uN5c3tReaTjVYw_heGqHEHixF1AFYMNAK650IHpRtFQiwzAVlwCjJqZNctlyjVi3wc_LtlHtI468Z89T0MXvsOjfgOOfGUm0Fp1wW-fW_UjOruNXqRQgGrAL7ciJodmyFF_j5H_g4zqn8MzfGCMGtscezcEI-jTknDM0hlXenp4bR5pjT_Gm3ObbbLO2WpU9L8rzvsX1eWeos4MsCXC79hOQGH_Oz49pwwVhxH08uIuJfl09nfgPv27Ko</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Haun, M.A.</creator><creator>Jones, D.L.</creator><creator>O'Brien, W.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Efficient three-dimensional imaging from a small cylindrical aperture</title><author>Haun, M.A. ; Jones, D.L. ; O'Brien, W.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-29813b58464b290ee7f21f82d49ca4fc269d624291af68286530a535d37e76d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acoustic signal processing</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Angular resolution</topic><topic>Aperture</topic><topic>Apertures</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>Focusing</topic><topic>Fourier transforms</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>High-resolution imaging</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>In vivo</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Physics</topic><topic>Probes</topic><topic>Studies</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography - instrumentation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haun, M.A.</creatorcontrib><creatorcontrib>Jones, D.L.</creatorcontrib><creatorcontrib>O'Brien, W.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haun, M.A.</au><au>Jones, D.L.</au><au>O'Brien, W.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient three-dimensional imaging from a small cylindrical aperture</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>49</volume><issue>7</issue><spage>861</spage><epage>870</epage><pages>861-870</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Small-diameter cylindrical imaging platforms, such as those being considered in the development of in vivo ultrasonic microprobes, pose unique image formation challenges. The curved apertures they provide are incompatible with many of the commonly used frequency-domain synthetic aperture imaging algorithms. At the same time, their frequently small diameters place limits on the available aperture and the angular resolution that may be achieved. We obtain a three-dimensional, frequency-domain imaging algorithm for this geometry by making suitable approximations to the point spread function for wave propagation in cylindrical coordinates and obtaining its Fourier transform by analogy with the equivalent problem in Cartesian coordinates. For the most effective use of aperture, we propose using a focused transducer to place a virtual source a short distance from the probe. The focus is treated as a diverging source by the imaging algorithm, which then forms images on deeper cylindrical shells. This approach retains the simplicity and potential angular resolution of a single element, yet permits full use of the available probe aperture and a higher energy output. Computer simulations and experimental results using wire targets show that this imaging technique attains the resolution limit dictated by the operating wavelength and the transducer characteristics.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12152940</pmid><doi>10.1109/TUFFC.2002.1020156</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2002-07, Vol.49 (7), p.861-870
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_journals_884439896
source IEEE Electronic Library (IEL)
subjects Acoustic signal processing
Acoustical measurements and instrumentation
Acoustics
Algorithms
Angular resolution
Aperture
Apertures
Biological and medical sciences
Computer Simulation
Energy resolution
Exact sciences and technology
Focusing
Fourier transforms
Fundamental areas of phenomenology (including applications)
Geometry
High-resolution imaging
Imaging
Imaging, Three-Dimensional
In vivo
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Miscellaneous. Technology
Physics
Probes
Studies
Transducers
Ultrasonic imaging
Ultrasonic investigative techniques
Ultrasonography - instrumentation
Wave propagation
title Efficient three-dimensional imaging from a small cylindrical aperture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20three-dimensional%20imaging%20from%20a%20small%20cylindrical%20aperture&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Haun,%20M.A.&rft.date=2002-07-01&rft.volume=49&rft.issue=7&rft.spage=861&rft.epage=870&rft.pages=861-870&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2002.1020156&rft_dat=%3Cproquest_RIE%3E71963976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884439896&rft_id=info:pmid/12152940&rft_ieee_id=1020156&rfr_iscdi=true