Roundness error compensation in lathe turning through 2-D ARMAX model based FCC

This paper describes the design, simulation, and implementation of a two-dimensional (2-D) exogenous autoregressive moving average (ARMAX) model-based forecasting compensatory control (FCC) system for a lathe turning machine. The 2-D ARMAX model is used to represent the relative motion errors betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2002-11, Vol.10 (6), p.902-911
Hauptverfasser: Fung, E.H.K., Leung, S.K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 911
container_issue 6
container_start_page 902
container_title IEEE transactions on control systems technology
container_volume 10
creator Fung, E.H.K.
Leung, S.K.S.
description This paper describes the design, simulation, and implementation of a two-dimensional (2-D) exogenous autoregressive moving average (ARMAX) model-based forecasting compensatory control (FCC) system for a lathe turning machine. The 2-D ARMAX model is used to represent the relative motion errors between the workpiece and the cutting tool in the longitudinal and radial directions. Here, the formulation of recursive ARMAX models is necessary to account for the variation of the cutting force, which is the exogenous input to this process. The parameters are estimated online by means of the recursive extended least square (RELS) method. The predicted motion errors, which will adversely affect the workpiece roundness, are compensated by means of a two-axis piezoactuator. An offline simulation model has been developed to find the most suitable model order and parameters. The application of the proposed system to both simulated and actual cutting data has confirmed the effectiveness of the proposed strategy. Experiments revealed that the maximum roundness improvement achieved could be as high as 66% while the average roundness improvement is found to be 52%, which proved the effectiveness of the proposed FCC system.
doi_str_mv 10.1109/TCST.2002.804125
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884376265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1058061</ieee_id><sourcerecordid>29030208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d0f42de8de4a93358380eabb5b68913c2810fd4bf90c8307c17900823e8e98b03</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEmXhjsTFQgJO2Y7tOJkcVykFpFaVyiJxsxxn0k2VtRc7OfTf49VWAnGgp5nD955m3mPsrYC1ENCcb9vv27UEkGuEUkj9jJ0JrbEArPTzvEOlikqr6iV7ldI9gCi1rM_YzW1YfO8pJU4xhshd2B_IJzuPwfPR88nOO-LzEv3o7_i8i2G523FZXPDN7fXmJ9-Hnibe2UQ9v2zb1-zFYKdEbx7niv24_LxtvxZXN1--tZurwuXj5qKHoZQ9YU-lbZTSqBDIdp3uKmyEchIFDH3ZDQ04VFA7UTcAKBUhNdiBWrFPJ99DDL8WSrPZj8nRNFlPYUmmAcx8TiKTH_9LygYUSMCnQdR1DarO4Pt_wPuQ88nvGsRS1ZXMQa8YnCAXQ0qRBnOI497GByPAHBszx8bMsTFzaixLPjz62uTsNETr3Zj-6EqtsFFH7t2JG4noL1uNUAn1G-xLm7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884376265</pqid></control><display><type>article</type><title>Roundness error compensation in lathe turning through 2-D ARMAX model based FCC</title><source>IEEE Electronic Library (IEL)</source><creator>Fung, E.H.K. ; Leung, S.K.S.</creator><creatorcontrib>Fung, E.H.K. ; Leung, S.K.S.</creatorcontrib><description>This paper describes the design, simulation, and implementation of a two-dimensional (2-D) exogenous autoregressive moving average (ARMAX) model-based forecasting compensatory control (FCC) system for a lathe turning machine. The 2-D ARMAX model is used to represent the relative motion errors between the workpiece and the cutting tool in the longitudinal and radial directions. Here, the formulation of recursive ARMAX models is necessary to account for the variation of the cutting force, which is the exogenous input to this process. The parameters are estimated online by means of the recursive extended least square (RELS) method. The predicted motion errors, which will adversely affect the workpiece roundness, are compensated by means of a two-axis piezoactuator. An offline simulation model has been developed to find the most suitable model order and parameters. The application of the proposed system to both simulated and actual cutting data has confirmed the effectiveness of the proposed strategy. Experiments revealed that the maximum roundness improvement achieved could be as high as 66% while the average roundness improvement is found to be 52%, which proved the effectiveness of the proposed FCC system.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2002.804125</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Autoregressive processes ; Computer science; control theory; systems ; Computer simulation ; Control system synthesis ; Control theory. Systems ; Cutting tools ; Error compensation ; Exact sciences and technology ; Face centered cubic lattice ; FCC ; Lathes ; Mathematical models ; Miscellaneous ; Modelling and identification ; Parameter estimation ; Predictive models ; Recursive estimation ; Roundness ; Shape ; Studies ; Turning ; Turning (machining) ; Two dimensional displays ; Workpieces</subject><ispartof>IEEE transactions on control systems technology, 2002-11, Vol.10 (6), p.902-911</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d0f42de8de4a93358380eabb5b68913c2810fd4bf90c8307c17900823e8e98b03</citedby><cites>FETCH-LOGICAL-c412t-d0f42de8de4a93358380eabb5b68913c2810fd4bf90c8307c17900823e8e98b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1058061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1058061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14538935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fung, E.H.K.</creatorcontrib><creatorcontrib>Leung, S.K.S.</creatorcontrib><title>Roundness error compensation in lathe turning through 2-D ARMAX model based FCC</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper describes the design, simulation, and implementation of a two-dimensional (2-D) exogenous autoregressive moving average (ARMAX) model-based forecasting compensatory control (FCC) system for a lathe turning machine. The 2-D ARMAX model is used to represent the relative motion errors between the workpiece and the cutting tool in the longitudinal and radial directions. Here, the formulation of recursive ARMAX models is necessary to account for the variation of the cutting force, which is the exogenous input to this process. The parameters are estimated online by means of the recursive extended least square (RELS) method. The predicted motion errors, which will adversely affect the workpiece roundness, are compensated by means of a two-axis piezoactuator. An offline simulation model has been developed to find the most suitable model order and parameters. The application of the proposed system to both simulated and actual cutting data has confirmed the effectiveness of the proposed strategy. Experiments revealed that the maximum roundness improvement achieved could be as high as 66% while the average roundness improvement is found to be 52%, which proved the effectiveness of the proposed FCC system.</description><subject>Applied sciences</subject><subject>Autoregressive processes</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Cutting tools</subject><subject>Error compensation</subject><subject>Exact sciences and technology</subject><subject>Face centered cubic lattice</subject><subject>FCC</subject><subject>Lathes</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Modelling and identification</subject><subject>Parameter estimation</subject><subject>Predictive models</subject><subject>Recursive estimation</subject><subject>Roundness</subject><subject>Shape</subject><subject>Studies</subject><subject>Turning</subject><subject>Turning (machining)</subject><subject>Two dimensional displays</subject><subject>Workpieces</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFv1DAQhS0EEmXhjsTFQgJO2Y7tOJkcVykFpFaVyiJxsxxn0k2VtRc7OfTf49VWAnGgp5nD955m3mPsrYC1ENCcb9vv27UEkGuEUkj9jJ0JrbEArPTzvEOlikqr6iV7ldI9gCi1rM_YzW1YfO8pJU4xhshd2B_IJzuPwfPR88nOO-LzEv3o7_i8i2G523FZXPDN7fXmJ9-Hnibe2UQ9v2zb1-zFYKdEbx7niv24_LxtvxZXN1--tZurwuXj5qKHoZQ9YU-lbZTSqBDIdp3uKmyEchIFDH3ZDQ04VFA7UTcAKBUhNdiBWrFPJ99DDL8WSrPZj8nRNFlPYUmmAcx8TiKTH_9LygYUSMCnQdR1DarO4Pt_wPuQ88nvGsRS1ZXMQa8YnCAXQ0qRBnOI497GByPAHBszx8bMsTFzaixLPjz62uTsNETr3Zj-6EqtsFFH7t2JG4noL1uNUAn1G-xLm7M</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Fung, E.H.K.</creator><creator>Leung, S.K.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20021101</creationdate><title>Roundness error compensation in lathe turning through 2-D ARMAX model based FCC</title><author>Fung, E.H.K. ; Leung, S.K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d0f42de8de4a93358380eabb5b68913c2810fd4bf90c8307c17900823e8e98b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Autoregressive processes</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Cutting tools</topic><topic>Error compensation</topic><topic>Exact sciences and technology</topic><topic>Face centered cubic lattice</topic><topic>FCC</topic><topic>Lathes</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Modelling and identification</topic><topic>Parameter estimation</topic><topic>Predictive models</topic><topic>Recursive estimation</topic><topic>Roundness</topic><topic>Shape</topic><topic>Studies</topic><topic>Turning</topic><topic>Turning (machining)</topic><topic>Two dimensional displays</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fung, E.H.K.</creatorcontrib><creatorcontrib>Leung, S.K.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fung, E.H.K.</au><au>Leung, S.K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roundness error compensation in lathe turning through 2-D ARMAX model based FCC</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2002-11-01</date><risdate>2002</risdate><volume>10</volume><issue>6</issue><spage>902</spage><epage>911</epage><pages>902-911</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper describes the design, simulation, and implementation of a two-dimensional (2-D) exogenous autoregressive moving average (ARMAX) model-based forecasting compensatory control (FCC) system for a lathe turning machine. The 2-D ARMAX model is used to represent the relative motion errors between the workpiece and the cutting tool in the longitudinal and radial directions. Here, the formulation of recursive ARMAX models is necessary to account for the variation of the cutting force, which is the exogenous input to this process. The parameters are estimated online by means of the recursive extended least square (RELS) method. The predicted motion errors, which will adversely affect the workpiece roundness, are compensated by means of a two-axis piezoactuator. An offline simulation model has been developed to find the most suitable model order and parameters. The application of the proposed system to both simulated and actual cutting data has confirmed the effectiveness of the proposed strategy. Experiments revealed that the maximum roundness improvement achieved could be as high as 66% while the average roundness improvement is found to be 52%, which proved the effectiveness of the proposed FCC system.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2002.804125</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2002-11, Vol.10 (6), p.902-911
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_884376265
source IEEE Electronic Library (IEL)
subjects Applied sciences
Autoregressive processes
Computer science
control theory
systems
Computer simulation
Control system synthesis
Control theory. Systems
Cutting tools
Error compensation
Exact sciences and technology
Face centered cubic lattice
FCC
Lathes
Mathematical models
Miscellaneous
Modelling and identification
Parameter estimation
Predictive models
Recursive estimation
Roundness
Shape
Studies
Turning
Turning (machining)
Two dimensional displays
Workpieces
title Roundness error compensation in lathe turning through 2-D ARMAX model based FCC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roundness%20error%20compensation%20in%20lathe%20turning%20through%202-D%20ARMAX%20model%20based%20FCC&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Fung,%20E.H.K.&rft.date=2002-11-01&rft.volume=10&rft.issue=6&rft.spage=902&rft.epage=911&rft.pages=902-911&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2002.804125&rft_dat=%3Cproquest_RIE%3E29030208%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884376265&rft_id=info:pmid/&rft_ieee_id=1058061&rfr_iscdi=true