An Information Diffusion-Based Recommendation Framework for Micro-Blogging
Micro-blogging is increasingly evolving from a daily chatting tool into a critical platform for individuals and organizations to seek and share real-time news updates during emergencies. However, seeking and extracting useful information from micro-blogging sites poses significant challenges due to...
Gespeichert in:
Veröffentlicht in: | Journal of the Association for Information Systems 2011-07, Vol.12 (7), p.463-486 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 7 |
container_start_page | 463 |
container_title | Journal of the Association for Information Systems |
container_volume | 12 |
creator | Cheng, Jiesi Sun, Aaron Hu, Daning Zeng, Daniel |
description | Micro-blogging is increasingly evolving from a daily chatting tool into a critical platform for individuals and organizations to seek and share real-time news updates during emergencies. However, seeking and extracting useful information from micro-blogging sites poses significant challenges due to the volume of the traffic and the presence of a large body of irrelevant personal messages and spam. In this paper, we propose a novel recommendation framework to overcome this problem. By analyzing information diffusion patterns among a large set of micro-blogs that play the role of emergency news providers, our approach selects a small subset as recommended emergency news feeds for regular users. We evaluate our diffusion-based recommendation framework on Twitter during the early outbreak of H1N1 Flu. The evaluation results show that our method results in more balanced and comprehensive recommendations compared to benchmark approaches. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.17705/1jais.00271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884332793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429697261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-adf2cbbccbadb8a0a282fdffe9e2414e1b16f6b6e0a37080497fdf59b868c3173</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EEqVw4wMizris7SR2jm2hUFSEhOBs2Y4dJTRxsRsh_p4o4cBpR5rZ3dFD6JrAgnAO2R1pVB0XAJSTEzQjGctxwSg7_afP0UWMDQDJCM9m6HnZJdvO-dCqY-275L52ro-DwisVbZm8WePb1nblZG-Cau23D5_JsJK81CZ4vNr7qqq76hKdObWP9upvztHH5uF9_YR3r4_b9XKHDQM4YlU6arQ2RqtSCwWKCupK52xhaUpSSzTJXa5zC4pxEJAWfLCzQotcGEY4m6Ob6e4h-K_exqNsfB-64aUUImWM8oINodspNDSMMVgnD6FuVfiRBOQIS46w5AiL_QJqzl44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884332793</pqid></control><display><type>article</type><title>An Information Diffusion-Based Recommendation Framework for Micro-Blogging</title><source>Business Source Complete</source><source>Digital Commons Online Journals</source><creator>Cheng, Jiesi ; Sun, Aaron ; Hu, Daning ; Zeng, Daniel</creator><creatorcontrib>Cheng, Jiesi ; Sun, Aaron ; Hu, Daning ; Zeng, Daniel ; University of Arizona ; University of Zurich</creatorcontrib><description>Micro-blogging is increasingly evolving from a daily chatting tool into a critical platform for individuals and organizations to seek and share real-time news updates during emergencies. However, seeking and extracting useful information from micro-blogging sites poses significant challenges due to the volume of the traffic and the presence of a large body of irrelevant personal messages and spam. In this paper, we propose a novel recommendation framework to overcome this problem. By analyzing information diffusion patterns among a large set of micro-blogs that play the role of emergency news providers, our approach selects a small subset as recommended emergency news feeds for regular users. We evaluate our diffusion-based recommendation framework on Twitter during the early outbreak of H1N1 Flu. The evaluation results show that our method results in more balanced and comprehensive recommendations compared to benchmark approaches. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1536-9323</identifier><identifier>EISSN: 1536-9323</identifier><identifier>DOI: 10.17705/1jais.00271</identifier><language>eng</language><publisher>Atlanta: Association for Information Systems</publisher><subject>Blogs ; Information retrieval ; Information systems ; Real time ; Social networks ; Studies ; Swine flu ; Traffic flow</subject><ispartof>Journal of the Association for Information Systems, 2011-07, Vol.12 (7), p.463-486</ispartof><rights>Copyright Association for Information Systems Jul 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-adf2cbbccbadb8a0a282fdffe9e2414e1b16f6b6e0a37080497fdf59b868c3173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Cheng, Jiesi</creatorcontrib><creatorcontrib>Sun, Aaron</creatorcontrib><creatorcontrib>Hu, Daning</creatorcontrib><creatorcontrib>Zeng, Daniel</creatorcontrib><creatorcontrib>University of Arizona</creatorcontrib><creatorcontrib>University of Zurich</creatorcontrib><title>An Information Diffusion-Based Recommendation Framework for Micro-Blogging</title><title>Journal of the Association for Information Systems</title><description>Micro-blogging is increasingly evolving from a daily chatting tool into a critical platform for individuals and organizations to seek and share real-time news updates during emergencies. However, seeking and extracting useful information from micro-blogging sites poses significant challenges due to the volume of the traffic and the presence of a large body of irrelevant personal messages and spam. In this paper, we propose a novel recommendation framework to overcome this problem. By analyzing information diffusion patterns among a large set of micro-blogs that play the role of emergency news providers, our approach selects a small subset as recommended emergency news feeds for regular users. We evaluate our diffusion-based recommendation framework on Twitter during the early outbreak of H1N1 Flu. The evaluation results show that our method results in more balanced and comprehensive recommendations compared to benchmark approaches. [PUBLICATION ABSTRACT]</description><subject>Blogs</subject><subject>Information retrieval</subject><subject>Information systems</subject><subject>Real time</subject><subject>Social networks</subject><subject>Studies</subject><subject>Swine flu</subject><subject>Traffic flow</subject><issn>1536-9323</issn><issn>1536-9323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMFOwzAQRC0EEqVw4wMizris7SR2jm2hUFSEhOBs2Y4dJTRxsRsh_p4o4cBpR5rZ3dFD6JrAgnAO2R1pVB0XAJSTEzQjGctxwSg7_afP0UWMDQDJCM9m6HnZJdvO-dCqY-275L52ro-DwisVbZm8WePb1nblZG-Cau23D5_JsJK81CZ4vNr7qqq76hKdObWP9upvztHH5uF9_YR3r4_b9XKHDQM4YlU6arQ2RqtSCwWKCupK52xhaUpSSzTJXa5zC4pxEJAWfLCzQotcGEY4m6Ob6e4h-K_exqNsfB-64aUUImWM8oINodspNDSMMVgnD6FuVfiRBOQIS46w5AiL_QJqzl44</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Cheng, Jiesi</creator><creator>Sun, Aaron</creator><creator>Hu, Daning</creator><creator>Zeng, Daniel</creator><general>Association for Information Systems</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110701</creationdate><title>An Information Diffusion-Based Recommendation Framework for Micro-Blogging</title><author>Cheng, Jiesi ; Sun, Aaron ; Hu, Daning ; Zeng, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-adf2cbbccbadb8a0a282fdffe9e2414e1b16f6b6e0a37080497fdf59b868c3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blogs</topic><topic>Information retrieval</topic><topic>Information systems</topic><topic>Real time</topic><topic>Social networks</topic><topic>Studies</topic><topic>Swine flu</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jiesi</creatorcontrib><creatorcontrib>Sun, Aaron</creatorcontrib><creatorcontrib>Hu, Daning</creatorcontrib><creatorcontrib>Zeng, Daniel</creatorcontrib><creatorcontrib>University of Arizona</creatorcontrib><creatorcontrib>University of Zurich</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Association for Information Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jiesi</au><au>Sun, Aaron</au><au>Hu, Daning</au><au>Zeng, Daniel</au><aucorp>University of Arizona</aucorp><aucorp>University of Zurich</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Information Diffusion-Based Recommendation Framework for Micro-Blogging</atitle><jtitle>Journal of the Association for Information Systems</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>12</volume><issue>7</issue><spage>463</spage><epage>486</epage><pages>463-486</pages><issn>1536-9323</issn><eissn>1536-9323</eissn><abstract>Micro-blogging is increasingly evolving from a daily chatting tool into a critical platform for individuals and organizations to seek and share real-time news updates during emergencies. However, seeking and extracting useful information from micro-blogging sites poses significant challenges due to the volume of the traffic and the presence of a large body of irrelevant personal messages and spam. In this paper, we propose a novel recommendation framework to overcome this problem. By analyzing information diffusion patterns among a large set of micro-blogs that play the role of emergency news providers, our approach selects a small subset as recommended emergency news feeds for regular users. We evaluate our diffusion-based recommendation framework on Twitter during the early outbreak of H1N1 Flu. The evaluation results show that our method results in more balanced and comprehensive recommendations compared to benchmark approaches. [PUBLICATION ABSTRACT]</abstract><cop>Atlanta</cop><pub>Association for Information Systems</pub><doi>10.17705/1jais.00271</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-9323 |
ispartof | Journal of the Association for Information Systems, 2011-07, Vol.12 (7), p.463-486 |
issn | 1536-9323 1536-9323 |
language | eng |
recordid | cdi_proquest_journals_884332793 |
source | Business Source Complete; Digital Commons Online Journals |
subjects | Blogs Information retrieval Information systems Real time Social networks Studies Swine flu Traffic flow |
title | An Information Diffusion-Based Recommendation Framework for Micro-Blogging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Information%20Diffusion-Based%20Recommendation%20Framework%20for%20Micro-Blogging&rft.jtitle=Journal%20of%20the%20Association%20for%20Information%20Systems&rft.au=Cheng,%20Jiesi&rft.aucorp=University%20of%20Arizona&rft.date=2011-07-01&rft.volume=12&rft.issue=7&rft.spage=463&rft.epage=486&rft.pages=463-486&rft.issn=1536-9323&rft.eissn=1536-9323&rft_id=info:doi/10.17705/1jais.00271&rft_dat=%3Cproquest_cross%3E2429697261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884332793&rft_id=info:pmid/&rfr_iscdi=true |