A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions
A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxels N. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2003-02, Vol.25 (2), p.265-270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 2 |
container_start_page | 265 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 25 |
creator | Maurer, C.R. Rensheng Qi Raghavan, V. |
description | A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxels N. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing the DT for a wide class of distance functions, including the L/sub p/ and chamfer metrics. At each dimension level, the DT is computed by constructing the intersection of the Voronoi diagram whose sites are the feature voxels with each row of the image. This construction is performed efficiently by using the DT in the next lower dimension. The correctness and linear time complexity are demonstrated analytically and verified experimentally. The algorithm may be of practical value since it is relatively simple and easy to implement and it is relatively fast (not only does it run in O(N) time but the time constant is small). A simple modification of the algorithm computes the weighted Euclidean DT, which is useful for images with anisotropic voxel dimensions. A parallel version of the algorithm runs in O(N/p) time with p processors. |
doi_str_mv | 10.1109/TPAMI.2003.1177156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884311778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1177156</ieee_id><sourcerecordid>28373059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-614da8ec735bfa4144369181710893349de6962fd15ef874285bb63dd5d268113</originalsourceid><addsrcrecordid>eNp9kUFP3DAQha2qlbql_QPlYnGAU6gndmL7uEIUkEBwgLPlxJPFKLG3diKVf18vu1IlDpxGM_O9keY9Qn4COwdg-tfjw_ru5rxmjJdeSmjaT2QFmuuKN1x_JisGbV0pVauv5FvOL4yBaBhfkbSmow9oE539hNSOm5j8_DzRISbax2m7zD5sKP61_Uwvl370Dm2gzufZhh7pnGzIhZ0yjQPtfLDplfrJbjBTH6hNnS9ImblyPmQfQ_5Ovgx2zPjjUI_I0-_Lx4vr6vb-6uZifVv1QrK5akE4q7CXvOkGK0AI3mpQIIEpzbnQDlvd1oODBgclRa2armu5c42rWwXAj8jZ_u42xT8L5tlMPvc4jjZgXLLRDCQDLWUhTz8ka8UlZ40u4Mk78CUuKZQvjFKC76xXBar3UJ9izgkHs03FkfRqgJldWuYtLbNLyxzSKqLjvcgj4n_BYfsP8ZiQ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884311778</pqid></control><display><type>article</type><title>A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions</title><source>IEEE Electronic Library (IEL)</source><creator>Maurer, C.R. ; Rensheng Qi ; Raghavan, V.</creator><creatorcontrib>Maurer, C.R. ; Rensheng Qi ; Raghavan, V.</creatorcontrib><description>A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxels N. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing the DT for a wide class of distance functions, including the L/sub p/ and chamfer metrics. At each dimension level, the DT is computed by constructing the intersection of the Voronoi diagram whose sites are the feature voxels with each row of the image. This construction is performed efficiently by using the DT in the next lower dimension. The correctness and linear time complexity are demonstrated analytically and verified experimentally. The algorithm may be of practical value since it is relatively simple and easy to implement and it is relatively fast (not only does it run in O(N) time but the time constant is small). A simple modification of the algorithm computes the weighted Euclidean DT, which is useful for images with anisotropic voxel dimensions. A parallel version of the algorithm runs in O(N/p) time with p processors.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2003.1177156</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anisotropic magnetoresistance ; Chamfering ; Computer vision ; Computing time ; Construction ; Euclidean distance ; Image processing ; Image registration ; Interpolation ; Mathematical analysis ; Nearest neighbor searches ; Pattern analysis ; Pattern matching ; Skeleton ; Studies ; Surface morphology ; Transforms</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2003-02, Vol.25 (2), p.265-270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-614da8ec735bfa4144369181710893349de6962fd15ef874285bb63dd5d268113</citedby><cites>FETCH-LOGICAL-c470t-614da8ec735bfa4144369181710893349de6962fd15ef874285bb63dd5d268113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1177156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1177156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maurer, C.R.</creatorcontrib><creatorcontrib>Rensheng Qi</creatorcontrib><creatorcontrib>Raghavan, V.</creatorcontrib><title>A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxels N. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing the DT for a wide class of distance functions, including the L/sub p/ and chamfer metrics. At each dimension level, the DT is computed by constructing the intersection of the Voronoi diagram whose sites are the feature voxels with each row of the image. This construction is performed efficiently by using the DT in the next lower dimension. The correctness and linear time complexity are demonstrated analytically and verified experimentally. The algorithm may be of practical value since it is relatively simple and easy to implement and it is relatively fast (not only does it run in O(N) time but the time constant is small). A simple modification of the algorithm computes the weighted Euclidean DT, which is useful for images with anisotropic voxel dimensions. A parallel version of the algorithm runs in O(N/p) time with p processors.</description><subject>Algorithms</subject><subject>Anisotropic magnetoresistance</subject><subject>Chamfering</subject><subject>Computer vision</subject><subject>Computing time</subject><subject>Construction</subject><subject>Euclidean distance</subject><subject>Image processing</subject><subject>Image registration</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Nearest neighbor searches</subject><subject>Pattern analysis</subject><subject>Pattern matching</subject><subject>Skeleton</subject><subject>Studies</subject><subject>Surface morphology</subject><subject>Transforms</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFP3DAQha2qlbql_QPlYnGAU6gndmL7uEIUkEBwgLPlxJPFKLG3diKVf18vu1IlDpxGM_O9keY9Qn4COwdg-tfjw_ru5rxmjJdeSmjaT2QFmuuKN1x_JisGbV0pVauv5FvOL4yBaBhfkbSmow9oE539hNSOm5j8_DzRISbax2m7zD5sKP61_Uwvl370Dm2gzufZhh7pnGzIhZ0yjQPtfLDplfrJbjBTH6hNnS9ImblyPmQfQ_5Ovgx2zPjjUI_I0-_Lx4vr6vb-6uZifVv1QrK5akE4q7CXvOkGK0AI3mpQIIEpzbnQDlvd1oODBgclRa2armu5c42rWwXAj8jZ_u42xT8L5tlMPvc4jjZgXLLRDCQDLWUhTz8ka8UlZ40u4Mk78CUuKZQvjFKC76xXBar3UJ9izgkHs03FkfRqgJldWuYtLbNLyxzSKqLjvcgj4n_BYfsP8ZiQ_w</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Maurer, C.R.</creator><creator>Rensheng Qi</creator><creator>Raghavan, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030201</creationdate><title>A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions</title><author>Maurer, C.R. ; Rensheng Qi ; Raghavan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-614da8ec735bfa4144369181710893349de6962fd15ef874285bb63dd5d268113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Anisotropic magnetoresistance</topic><topic>Chamfering</topic><topic>Computer vision</topic><topic>Computing time</topic><topic>Construction</topic><topic>Euclidean distance</topic><topic>Image processing</topic><topic>Image registration</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Nearest neighbor searches</topic><topic>Pattern analysis</topic><topic>Pattern matching</topic><topic>Skeleton</topic><topic>Studies</topic><topic>Surface morphology</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurer, C.R.</creatorcontrib><creatorcontrib>Rensheng Qi</creatorcontrib><creatorcontrib>Raghavan, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maurer, C.R.</au><au>Rensheng Qi</au><au>Raghavan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2003-02-01</date><risdate>2003</risdate><volume>25</volume><issue>2</issue><spage>265</spage><epage>270</epage><pages>265-270</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxels N. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing the DT for a wide class of distance functions, including the L/sub p/ and chamfer metrics. At each dimension level, the DT is computed by constructing the intersection of the Voronoi diagram whose sites are the feature voxels with each row of the image. This construction is performed efficiently by using the DT in the next lower dimension. The correctness and linear time complexity are demonstrated analytically and verified experimentally. The algorithm may be of practical value since it is relatively simple and easy to implement and it is relatively fast (not only does it run in O(N) time but the time constant is small). A simple modification of the algorithm computes the weighted Euclidean DT, which is useful for images with anisotropic voxel dimensions. A parallel version of the algorithm runs in O(N/p) time with p processors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPAMI.2003.1177156</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2003-02, Vol.25 (2), p.265-270 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_journals_884311778 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anisotropic magnetoresistance Chamfering Computer vision Computing time Construction Euclidean distance Image processing Image registration Interpolation Mathematical analysis Nearest neighbor searches Pattern analysis Pattern matching Skeleton Studies Surface morphology Transforms |
title | A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20time%20algorithm%20for%20computing%20exact%20Euclidean%20distance%20transforms%20of%20binary%20images%20in%20arbitrary%20dimensions&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Maurer,%20C.R.&rft.date=2003-02-01&rft.volume=25&rft.issue=2&rft.spage=265&rft.epage=270&rft.pages=265-270&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2003.1177156&rft_dat=%3Cproquest_RIE%3E28373059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884311778&rft_id=info:pmid/&rft_ieee_id=1177156&rfr_iscdi=true |