Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair

There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (33), p.13438-13443
Hauptverfasser: Webber, Matthew J, Tongers, Jörn, Newcomb, Christina J, Marquardt, Katja-Theres, Bauersachs, Johann, Losordo, Douglas W, Stupp, Samuel I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13443
container_issue 33
container_start_page 13438
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Webber, Matthew J
Tongers, Jörn
Newcomb, Christina J
Marquardt, Katja-Theres
Bauersachs, Johann
Losordo, Douglas W
Stupp, Samuel I
description There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.
doi_str_mv 10.1073/pnas.1016546108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_884299536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979217</jstor_id><sourcerecordid>27979217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmwOHFJO_5IbF8qoaotSJV6aOnVcpPxblZJHOwEqf89jnbp0p5s6f38PG8eIR8ZnDBQ4nQcXMo3VpWyYqBfkRUDw4pKGnhNVgBcFVpyeUTepbQFAFNqeEuOONOgQVQrcn87j9H1ocN67lykgxtCmuJcT3PERKeNm2jf9m1N7y-uLqlL1NGsuwnXj9SHSNtUb3DRpzalGWnE0bXxPXnjXZfww_48JneXF3fnP4rrm6uf59-vi7rkYiqkAu6VE7oE4QVXYLhE3yjQvmwalPhgOCoQ6Jn0IJlHL3UtwHmEpqnEMTnb2Y7zQ49NjUMerbNjbHsXH21wrX2uDO3GrsMfK1ipmebZ4NveIIbfM6bJ9jkQdp0bMMzJsqoSZakVLH99fYFuwxyHnM7qvGNjSrFApzuojiGliP5pFgZ2acwujdlDY_nF5_8jPPH_KsoA3QPLy4OdtkJYJqRYPD7tkG2aQjxYKKMMZyrrX3a6d8G6dWyT_XXLgUmAvASTw_0F-pewdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884299536</pqid></control><display><type>article</type><title>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Webber, Matthew J ; Tongers, Jörn ; Newcomb, Christina J ; Marquardt, Katja-Theres ; Bauersachs, Johann ; Losordo, Douglas W ; Stupp, Samuel I</creator><creatorcontrib>Webber, Matthew J ; Tongers, Jörn ; Newcomb, Christina J ; Marquardt, Katja-Theres ; Bauersachs, Johann ; Losordo, Douglas W ; Stupp, Samuel I</creatorcontrib><description>There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1016546108</identifier><identifier>PMID: 21808036</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angiogenesis ; Angiogenic Proteins - chemistry ; Angiogenic Proteins - therapeutic use ; Animals ; Biological Sciences ; cardiovascular diseases ; Cell Line ; Chick Embryo ; chickens ; DNA repair ; endothelial cells ; Endothelium, Vascular ; Epitopes ; Humans ; Ischemia ; Ischemia - drug therapy ; Medical treatment ; Mice ; Molecular Mimicry ; Molecular structure ; Molecules ; morbidity ; mortality ; Motor ability ; nanofibers ; Nanostructures ; Nanostructures - chemistry ; Nanostructures - therapeutic use ; Neovascularization, Physiologic - drug effects ; Peptides ; Perfusion ; Phosphorylation ; Physical Sciences ; proteins ; Receptors ; therapeutics ; tissue repair ; Tissues ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - physiology ; vascular endothelial growth factor receptors ; Wound Healing - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13438-13443</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 16, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</citedby><cites>FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21808036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Newcomb, Christina J</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Bauersachs, Johann</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><title>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.</description><subject>Angiogenesis</subject><subject>Angiogenic Proteins - chemistry</subject><subject>Angiogenic Proteins - therapeutic use</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>cardiovascular diseases</subject><subject>Cell Line</subject><subject>Chick Embryo</subject><subject>chickens</subject><subject>DNA repair</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular</subject><subject>Epitopes</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Ischemia - drug therapy</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Molecular Mimicry</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>morbidity</subject><subject>mortality</subject><subject>Motor ability</subject><subject>nanofibers</subject><subject>Nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - therapeutic use</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Peptides</subject><subject>Perfusion</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>proteins</subject><subject>Receptors</subject><subject>therapeutics</subject><subject>tissue repair</subject><subject>Tissues</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>vascular endothelial growth factor receptors</subject><subject>Wound Healing - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmwOHFJO_5IbF8qoaotSJV6aOnVcpPxblZJHOwEqf89jnbp0p5s6f38PG8eIR8ZnDBQ4nQcXMo3VpWyYqBfkRUDw4pKGnhNVgBcFVpyeUTepbQFAFNqeEuOONOgQVQrcn87j9H1ocN67lykgxtCmuJcT3PERKeNm2jf9m1N7y-uLqlL1NGsuwnXj9SHSNtUb3DRpzalGWnE0bXxPXnjXZfww_48JneXF3fnP4rrm6uf59-vi7rkYiqkAu6VE7oE4QVXYLhE3yjQvmwalPhgOCoQ6Jn0IJlHL3UtwHmEpqnEMTnb2Y7zQ49NjUMerbNjbHsXH21wrX2uDO3GrsMfK1ipmebZ4NveIIbfM6bJ9jkQdp0bMMzJsqoSZakVLH99fYFuwxyHnM7qvGNjSrFApzuojiGliP5pFgZ2acwujdlDY_nF5_8jPPH_KsoA3QPLy4OdtkJYJqRYPD7tkG2aQjxYKKMMZyrrX3a6d8G6dWyT_XXLgUmAvASTw_0F-pewdQ</recordid><startdate>20110816</startdate><enddate>20110816</enddate><creator>Webber, Matthew J</creator><creator>Tongers, Jörn</creator><creator>Newcomb, Christina J</creator><creator>Marquardt, Katja-Theres</creator><creator>Bauersachs, Johann</creator><creator>Losordo, Douglas W</creator><creator>Stupp, Samuel I</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20110816</creationdate><title>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</title><author>Webber, Matthew J ; Tongers, Jörn ; Newcomb, Christina J ; Marquardt, Katja-Theres ; Bauersachs, Johann ; Losordo, Douglas W ; Stupp, Samuel I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis</topic><topic>Angiogenic Proteins - chemistry</topic><topic>Angiogenic Proteins - therapeutic use</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>cardiovascular diseases</topic><topic>Cell Line</topic><topic>Chick Embryo</topic><topic>chickens</topic><topic>DNA repair</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular</topic><topic>Epitopes</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Ischemia - drug therapy</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Molecular Mimicry</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>morbidity</topic><topic>mortality</topic><topic>Motor ability</topic><topic>nanofibers</topic><topic>Nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - therapeutic use</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Peptides</topic><topic>Perfusion</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>proteins</topic><topic>Receptors</topic><topic>therapeutics</topic><topic>tissue repair</topic><topic>Tissues</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>vascular endothelial growth factor receptors</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Newcomb, Christina J</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Bauersachs, Johann</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webber, Matthew J</au><au>Tongers, Jörn</au><au>Newcomb, Christina J</au><au>Marquardt, Katja-Theres</au><au>Bauersachs, Johann</au><au>Losordo, Douglas W</au><au>Stupp, Samuel I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-16</date><risdate>2011</risdate><volume>108</volume><issue>33</issue><spage>13438</spage><epage>13443</epage><pages>13438-13443</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21808036</pmid><doi>10.1073/pnas.1016546108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13438-13443
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_884299536
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Angiogenesis
Angiogenic Proteins - chemistry
Angiogenic Proteins - therapeutic use
Animals
Biological Sciences
cardiovascular diseases
Cell Line
Chick Embryo
chickens
DNA repair
endothelial cells
Endothelium, Vascular
Epitopes
Humans
Ischemia
Ischemia - drug therapy
Medical treatment
Mice
Molecular Mimicry
Molecular structure
Molecules
morbidity
mortality
Motor ability
nanofibers
Nanostructures
Nanostructures - chemistry
Nanostructures - therapeutic use
Neovascularization, Physiologic - drug effects
Peptides
Perfusion
Phosphorylation
Physical Sciences
proteins
Receptors
therapeutics
tissue repair
Tissues
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - physiology
vascular endothelial growth factor receptors
Wound Healing - drug effects
title Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20nanostructures%20that%20mimic%20VEGF%20as%20a%20strategy%20for%20ischemic%20tissue%20repair&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Webber,%20Matthew%20J&rft.date=2011-08-16&rft.volume=108&rft.issue=33&rft.spage=13438&rft.epage=13443&rft.pages=13438-13443&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1016546108&rft_dat=%3Cjstor_proqu%3E27979217%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884299536&rft_id=info:pmid/21808036&rft_jstor_id=27979217&rfr_iscdi=true