Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair
There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (33), p.13438-13443 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13443 |
---|---|
container_issue | 33 |
container_start_page | 13438 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Webber, Matthew J Tongers, Jörn Newcomb, Christina J Marquardt, Katja-Theres Bauersachs, Johann Losordo, Douglas W Stupp, Samuel I |
description | There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers. |
doi_str_mv | 10.1073/pnas.1016546108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_884299536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979217</jstor_id><sourcerecordid>27979217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmwOHFJO_5IbF8qoaotSJV6aOnVcpPxblZJHOwEqf89jnbp0p5s6f38PG8eIR8ZnDBQ4nQcXMo3VpWyYqBfkRUDw4pKGnhNVgBcFVpyeUTepbQFAFNqeEuOONOgQVQrcn87j9H1ocN67lykgxtCmuJcT3PERKeNm2jf9m1N7y-uLqlL1NGsuwnXj9SHSNtUb3DRpzalGWnE0bXxPXnjXZfww_48JneXF3fnP4rrm6uf59-vi7rkYiqkAu6VE7oE4QVXYLhE3yjQvmwalPhgOCoQ6Jn0IJlHL3UtwHmEpqnEMTnb2Y7zQ49NjUMerbNjbHsXH21wrX2uDO3GrsMfK1ipmebZ4NveIIbfM6bJ9jkQdp0bMMzJsqoSZakVLH99fYFuwxyHnM7qvGNjSrFApzuojiGliP5pFgZ2acwujdlDY_nF5_8jPPH_KsoA3QPLy4OdtkJYJqRYPD7tkG2aQjxYKKMMZyrrX3a6d8G6dWyT_XXLgUmAvASTw_0F-pewdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884299536</pqid></control><display><type>article</type><title>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Webber, Matthew J ; Tongers, Jörn ; Newcomb, Christina J ; Marquardt, Katja-Theres ; Bauersachs, Johann ; Losordo, Douglas W ; Stupp, Samuel I</creator><creatorcontrib>Webber, Matthew J ; Tongers, Jörn ; Newcomb, Christina J ; Marquardt, Katja-Theres ; Bauersachs, Johann ; Losordo, Douglas W ; Stupp, Samuel I</creatorcontrib><description>There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1016546108</identifier><identifier>PMID: 21808036</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angiogenesis ; Angiogenic Proteins - chemistry ; Angiogenic Proteins - therapeutic use ; Animals ; Biological Sciences ; cardiovascular diseases ; Cell Line ; Chick Embryo ; chickens ; DNA repair ; endothelial cells ; Endothelium, Vascular ; Epitopes ; Humans ; Ischemia ; Ischemia - drug therapy ; Medical treatment ; Mice ; Molecular Mimicry ; Molecular structure ; Molecules ; morbidity ; mortality ; Motor ability ; nanofibers ; Nanostructures ; Nanostructures - chemistry ; Nanostructures - therapeutic use ; Neovascularization, Physiologic - drug effects ; Peptides ; Perfusion ; Phosphorylation ; Physical Sciences ; proteins ; Receptors ; therapeutics ; tissue repair ; Tissues ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - physiology ; vascular endothelial growth factor receptors ; Wound Healing - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13438-13443</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 16, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</citedby><cites>FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21808036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Newcomb, Christina J</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Bauersachs, Johann</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><title>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.</description><subject>Angiogenesis</subject><subject>Angiogenic Proteins - chemistry</subject><subject>Angiogenic Proteins - therapeutic use</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>cardiovascular diseases</subject><subject>Cell Line</subject><subject>Chick Embryo</subject><subject>chickens</subject><subject>DNA repair</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular</subject><subject>Epitopes</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Ischemia - drug therapy</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Molecular Mimicry</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>morbidity</subject><subject>mortality</subject><subject>Motor ability</subject><subject>nanofibers</subject><subject>Nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - therapeutic use</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Peptides</subject><subject>Perfusion</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>proteins</subject><subject>Receptors</subject><subject>therapeutics</subject><subject>tissue repair</subject><subject>Tissues</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>vascular endothelial growth factor receptors</subject><subject>Wound Healing - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmwOHFJO_5IbF8qoaotSJV6aOnVcpPxblZJHOwEqf89jnbp0p5s6f38PG8eIR8ZnDBQ4nQcXMo3VpWyYqBfkRUDw4pKGnhNVgBcFVpyeUTepbQFAFNqeEuOONOgQVQrcn87j9H1ocN67lykgxtCmuJcT3PERKeNm2jf9m1N7y-uLqlL1NGsuwnXj9SHSNtUb3DRpzalGWnE0bXxPXnjXZfww_48JneXF3fnP4rrm6uf59-vi7rkYiqkAu6VE7oE4QVXYLhE3yjQvmwalPhgOCoQ6Jn0IJlHL3UtwHmEpqnEMTnb2Y7zQ49NjUMerbNjbHsXH21wrX2uDO3GrsMfK1ipmebZ4NveIIbfM6bJ9jkQdp0bMMzJsqoSZakVLH99fYFuwxyHnM7qvGNjSrFApzuojiGliP5pFgZ2acwujdlDY_nF5_8jPPH_KsoA3QPLy4OdtkJYJqRYPD7tkG2aQjxYKKMMZyrrX3a6d8G6dWyT_XXLgUmAvASTw_0F-pewdQ</recordid><startdate>20110816</startdate><enddate>20110816</enddate><creator>Webber, Matthew J</creator><creator>Tongers, Jörn</creator><creator>Newcomb, Christina J</creator><creator>Marquardt, Katja-Theres</creator><creator>Bauersachs, Johann</creator><creator>Losordo, Douglas W</creator><creator>Stupp, Samuel I</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20110816</creationdate><title>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</title><author>Webber, Matthew J ; Tongers, Jörn ; Newcomb, Christina J ; Marquardt, Katja-Theres ; Bauersachs, Johann ; Losordo, Douglas W ; Stupp, Samuel I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-4702f7a38503f3270924efd708f5dde4eb92e703ef14f041fef48c30afe0dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis</topic><topic>Angiogenic Proteins - chemistry</topic><topic>Angiogenic Proteins - therapeutic use</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>cardiovascular diseases</topic><topic>Cell Line</topic><topic>Chick Embryo</topic><topic>chickens</topic><topic>DNA repair</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular</topic><topic>Epitopes</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Ischemia - drug therapy</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Molecular Mimicry</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>morbidity</topic><topic>mortality</topic><topic>Motor ability</topic><topic>nanofibers</topic><topic>Nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - therapeutic use</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Peptides</topic><topic>Perfusion</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>proteins</topic><topic>Receptors</topic><topic>therapeutics</topic><topic>tissue repair</topic><topic>Tissues</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>vascular endothelial growth factor receptors</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Newcomb, Christina J</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Bauersachs, Johann</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webber, Matthew J</au><au>Tongers, Jörn</au><au>Newcomb, Christina J</au><au>Marquardt, Katja-Theres</au><au>Bauersachs, Johann</au><au>Losordo, Douglas W</au><au>Stupp, Samuel I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-16</date><risdate>2011</risdate><volume>108</volume><issue>33</issue><spage>13438</spage><epage>13443</epage><pages>13438-13443</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21808036</pmid><doi>10.1073/pnas.1016546108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13438-13443 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_884299536 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Angiogenesis Angiogenic Proteins - chemistry Angiogenic Proteins - therapeutic use Animals Biological Sciences cardiovascular diseases Cell Line Chick Embryo chickens DNA repair endothelial cells Endothelium, Vascular Epitopes Humans Ischemia Ischemia - drug therapy Medical treatment Mice Molecular Mimicry Molecular structure Molecules morbidity mortality Motor ability nanofibers Nanostructures Nanostructures - chemistry Nanostructures - therapeutic use Neovascularization, Physiologic - drug effects Peptides Perfusion Phosphorylation Physical Sciences proteins Receptors therapeutics tissue repair Tissues Vascular endothelial growth factor Vascular Endothelial Growth Factor A - physiology vascular endothelial growth factor receptors Wound Healing - drug effects |
title | Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20nanostructures%20that%20mimic%20VEGF%20as%20a%20strategy%20for%20ischemic%20tissue%20repair&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Webber,%20Matthew%20J&rft.date=2011-08-16&rft.volume=108&rft.issue=33&rft.spage=13438&rft.epage=13443&rft.pages=13438-13443&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1016546108&rft_dat=%3Cjstor_proqu%3E27979217%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884299536&rft_id=info:pmid/21808036&rft_jstor_id=27979217&rfr_iscdi=true |