Differential space time block codes using nonconstant modulus constellations

We propose differential space time block codes (STBC) using nonconstant modulus constellations, e.g., quadrature amplitude modulation (QAM), which cannot be utilized in the conventional differential STBC. Since QAM constellations have a larger minimum distance compared with the phase shift keying (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2003-11, Vol.51 (11), p.2955-2964
Hauptverfasser: Chan-Soo Hwang, Seung Hoon Nam, Jaehak Chung, Tarokh, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2964
container_issue 11
container_start_page 2955
container_title IEEE transactions on signal processing
container_volume 51
creator Chan-Soo Hwang
Seung Hoon Nam
Jaehak Chung
Tarokh, V.
description We propose differential space time block codes (STBC) using nonconstant modulus constellations, e.g., quadrature amplitude modulation (QAM), which cannot be utilized in the conventional differential STBC. Since QAM constellations have a larger minimum distance compared with the phase shift keying (PSK), the proposed method has the advantage of signal-to-noise ratio (SNR) gain compared with conventional differential STBC. The QAM signals are encoded in a manner similar to that of the conventional differential STBC. To decode nonconstant modulus signals, the received signals are normalized by the channel power estimated forgoing training symbols and then decoded with a conventional QAM decoder. Assuming the knowledge of the channel power at the receiver, the symbol error rate (SER) bound of the proposed method under independent Rayleigh fading assumption is derived, which shows better SER performance than the conventional differential STBC. When the transmission rate is more than 3 bits/channel use in time-varying channels, the simulation results demonstrate that the proposed method with the channel power estimation outperforms the conventional differential STBC. Specifically, the posed method using the channel power estimation obtains a 7.3 dB SNR gain at a transmission rate of 6 bits/channel use in slow fading channels. Although the performance gap between the proposed method and the conventional one decreases as the Doppler frequency increases, the proposed method still exhibits lower SER than the conventional one, provided the estimation interval L is chosen carefully.
doi_str_mv 10.1109/TSP.2003.818157
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884160803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1237427</ieee_id><sourcerecordid>2428618781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-db0258836eb89a4fd95e926f411026176d941f092ec055e74b62fb2bd71a61153</originalsourceid><addsrcrecordid>eNp9kb1LxEAQxYMoeJ7WFjaLhVa529nsV0o5P-FAwRPslnzMSs4ke2aTwv_ejREEC6t5DL83zONF0SnQBQBNl5vnpwWjNFlo0CDUXjSDlENMuZL7QVORxEKr18PoyPstpcB5KmfR-rqyFjts-yqrid9lBZK-apDktSveSeFK9GTwVftGWtcWrvV91vakceVQD558L7Cus74K6jg6sFnt8eRnzqOX25vN6j5eP949rK7WccFB9HGZUya0TiTmOs24LVOBKZOWhxxMgpJleNzSlGFBhUDFc8lszvJSQSYBRDKPLqe7u859DOh701S-GN9o0Q3epBSklkxDIC_-JQOjVUJH8PwPuHVD14YURmsOkmqaBGg5QUXnvO_Qml1XNVn3aYCasQQTSjBjCWYqITjOJkeFiL80SxRnKvkC_3WCLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884160803</pqid></control><display><type>article</type><title>Differential space time block codes using nonconstant modulus constellations</title><source>IEEE Electronic Library (IEL)</source><creator>Chan-Soo Hwang ; Seung Hoon Nam ; Jaehak Chung ; Tarokh, V.</creator><creatorcontrib>Chan-Soo Hwang ; Seung Hoon Nam ; Jaehak Chung ; Tarokh, V.</creatorcontrib><description>We propose differential space time block codes (STBC) using nonconstant modulus constellations, e.g., quadrature amplitude modulation (QAM), which cannot be utilized in the conventional differential STBC. Since QAM constellations have a larger minimum distance compared with the phase shift keying (PSK), the proposed method has the advantage of signal-to-noise ratio (SNR) gain compared with conventional differential STBC. The QAM signals are encoded in a manner similar to that of the conventional differential STBC. To decode nonconstant modulus signals, the received signals are normalized by the channel power estimated forgoing training symbols and then decoded with a conventional QAM decoder. Assuming the knowledge of the channel power at the receiver, the symbol error rate (SER) bound of the proposed method under independent Rayleigh fading assumption is derived, which shows better SER performance than the conventional differential STBC. When the transmission rate is more than 3 bits/channel use in time-varying channels, the simulation results demonstrate that the proposed method with the channel power estimation outperforms the conventional differential STBC. Specifically, the posed method using the channel power estimation obtains a 7.3 dB SNR gain at a transmission rate of 6 bits/channel use in slow fading channels. Although the performance gap between the proposed method and the conventional one decreases as the Doppler frequency increases, the proposed method still exhibits lower SER than the conventional one, provided the estimation interval L is chosen carefully.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2003.818157</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Block codes ; Channels ; Constellation diagram ; Constellations ; Decoding ; Doppler effect ; Error analysis ; Fading ; Frequency estimation ; Gain ; Phase shift keying ; Quadrature amplitude modulation ; Rayleigh channels ; Signal to noise ratio ; Symbols ; Time-varying channels</subject><ispartof>IEEE transactions on signal processing, 2003-11, Vol.51 (11), p.2955-2964</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-db0258836eb89a4fd95e926f411026176d941f092ec055e74b62fb2bd71a61153</citedby><cites>FETCH-LOGICAL-c415t-db0258836eb89a4fd95e926f411026176d941f092ec055e74b62fb2bd71a61153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1237427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1237427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan-Soo Hwang</creatorcontrib><creatorcontrib>Seung Hoon Nam</creatorcontrib><creatorcontrib>Jaehak Chung</creatorcontrib><creatorcontrib>Tarokh, V.</creatorcontrib><title>Differential space time block codes using nonconstant modulus constellations</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose differential space time block codes (STBC) using nonconstant modulus constellations, e.g., quadrature amplitude modulation (QAM), which cannot be utilized in the conventional differential STBC. Since QAM constellations have a larger minimum distance compared with the phase shift keying (PSK), the proposed method has the advantage of signal-to-noise ratio (SNR) gain compared with conventional differential STBC. The QAM signals are encoded in a manner similar to that of the conventional differential STBC. To decode nonconstant modulus signals, the received signals are normalized by the channel power estimated forgoing training symbols and then decoded with a conventional QAM decoder. Assuming the knowledge of the channel power at the receiver, the symbol error rate (SER) bound of the proposed method under independent Rayleigh fading assumption is derived, which shows better SER performance than the conventional differential STBC. When the transmission rate is more than 3 bits/channel use in time-varying channels, the simulation results demonstrate that the proposed method with the channel power estimation outperforms the conventional differential STBC. Specifically, the posed method using the channel power estimation obtains a 7.3 dB SNR gain at a transmission rate of 6 bits/channel use in slow fading channels. Although the performance gap between the proposed method and the conventional one decreases as the Doppler frequency increases, the proposed method still exhibits lower SER than the conventional one, provided the estimation interval L is chosen carefully.</description><subject>Block codes</subject><subject>Channels</subject><subject>Constellation diagram</subject><subject>Constellations</subject><subject>Decoding</subject><subject>Doppler effect</subject><subject>Error analysis</subject><subject>Fading</subject><subject>Frequency estimation</subject><subject>Gain</subject><subject>Phase shift keying</subject><subject>Quadrature amplitude modulation</subject><subject>Rayleigh channels</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Time-varying channels</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1LxEAQxYMoeJ7WFjaLhVa529nsV0o5P-FAwRPslnzMSs4ke2aTwv_ejREEC6t5DL83zONF0SnQBQBNl5vnpwWjNFlo0CDUXjSDlENMuZL7QVORxEKr18PoyPstpcB5KmfR-rqyFjts-yqrid9lBZK-apDktSveSeFK9GTwVftGWtcWrvV91vakceVQD558L7Cus74K6jg6sFnt8eRnzqOX25vN6j5eP949rK7WccFB9HGZUya0TiTmOs24LVOBKZOWhxxMgpJleNzSlGFBhUDFc8lszvJSQSYBRDKPLqe7u859DOh701S-GN9o0Q3epBSklkxDIC_-JQOjVUJH8PwPuHVD14YURmsOkmqaBGg5QUXnvO_Qml1XNVn3aYCasQQTSjBjCWYqITjOJkeFiL80SxRnKvkC_3WCLA</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Chan-Soo Hwang</creator><creator>Seung Hoon Nam</creator><creator>Jaehak Chung</creator><creator>Tarokh, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20031101</creationdate><title>Differential space time block codes using nonconstant modulus constellations</title><author>Chan-Soo Hwang ; Seung Hoon Nam ; Jaehak Chung ; Tarokh, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-db0258836eb89a4fd95e926f411026176d941f092ec055e74b62fb2bd71a61153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Block codes</topic><topic>Channels</topic><topic>Constellation diagram</topic><topic>Constellations</topic><topic>Decoding</topic><topic>Doppler effect</topic><topic>Error analysis</topic><topic>Fading</topic><topic>Frequency estimation</topic><topic>Gain</topic><topic>Phase shift keying</topic><topic>Quadrature amplitude modulation</topic><topic>Rayleigh channels</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Time-varying channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan-Soo Hwang</creatorcontrib><creatorcontrib>Seung Hoon Nam</creatorcontrib><creatorcontrib>Jaehak Chung</creatorcontrib><creatorcontrib>Tarokh, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan-Soo Hwang</au><au>Seung Hoon Nam</au><au>Jaehak Chung</au><au>Tarokh, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential space time block codes using nonconstant modulus constellations</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2003-11-01</date><risdate>2003</risdate><volume>51</volume><issue>11</issue><spage>2955</spage><epage>2964</epage><pages>2955-2964</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose differential space time block codes (STBC) using nonconstant modulus constellations, e.g., quadrature amplitude modulation (QAM), which cannot be utilized in the conventional differential STBC. Since QAM constellations have a larger minimum distance compared with the phase shift keying (PSK), the proposed method has the advantage of signal-to-noise ratio (SNR) gain compared with conventional differential STBC. The QAM signals are encoded in a manner similar to that of the conventional differential STBC. To decode nonconstant modulus signals, the received signals are normalized by the channel power estimated forgoing training symbols and then decoded with a conventional QAM decoder. Assuming the knowledge of the channel power at the receiver, the symbol error rate (SER) bound of the proposed method under independent Rayleigh fading assumption is derived, which shows better SER performance than the conventional differential STBC. When the transmission rate is more than 3 bits/channel use in time-varying channels, the simulation results demonstrate that the proposed method with the channel power estimation outperforms the conventional differential STBC. Specifically, the posed method using the channel power estimation obtains a 7.3 dB SNR gain at a transmission rate of 6 bits/channel use in slow fading channels. Although the performance gap between the proposed method and the conventional one decreases as the Doppler frequency increases, the proposed method still exhibits lower SER than the conventional one, provided the estimation interval L is chosen carefully.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2003.818157</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2003-11, Vol.51 (11), p.2955-2964
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_884160803
source IEEE Electronic Library (IEL)
subjects Block codes
Channels
Constellation diagram
Constellations
Decoding
Doppler effect
Error analysis
Fading
Frequency estimation
Gain
Phase shift keying
Quadrature amplitude modulation
Rayleigh channels
Signal to noise ratio
Symbols
Time-varying channels
title Differential space time block codes using nonconstant modulus constellations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20space%20time%20block%20codes%20using%20nonconstant%20modulus%20constellations&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Chan-Soo%20Hwang&rft.date=2003-11-01&rft.volume=51&rft.issue=11&rft.spage=2955&rft.epage=2964&rft.pages=2955-2964&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2003.818157&rft_dat=%3Cproquest_RIE%3E2428618781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884160803&rft_id=info:pmid/&rft_ieee_id=1237427&rfr_iscdi=true