Probabilistic space-time video modeling via piecewise GMM

In this paper, we describe a statistical video representation and modeling scheme. Video representation schemes are needed to segment a video stream into meaningful video-objects, useful for later indexing and retrieval applications. In the proposed methodology, unsupervised clustering via Gaussian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2004-03, Vol.26 (3), p.384-396
Hauptverfasser: Greenspan, H., Goldberger, J., Mayer, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 3
container_start_page 384
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 26
creator Greenspan, H.
Goldberger, J.
Mayer, A.
description In this paper, we describe a statistical video representation and modeling scheme. Video representation schemes are needed to segment a video stream into meaningful video-objects, useful for later indexing and retrieval applications. In the proposed methodology, unsupervised clustering via Gaussian mixture modeling extracts coherent space-time regions in feature space, and corresponding coherent segments (video-regions) in the video content. A key feature of the system is the analysis of video input as a single entity as opposed to a sequence of separate frames. Space and time are treated uniformly. The probabilistic space-time video representation scheme is extended to a piecewise GMM framework in which a succession of GMMs are extracted for the video sequence, instead of a single global model for the entire sequence. The piecewise GMM framework allows for the analysis of extended video sequences and the description of nonlinear, nonconvex motion patterns. The extracted space-time regions allow for the detection and recognition of video events. Results of segmenting video content into static versus dynamic video regions and video content editing are presented.
doi_str_mv 10.1109/TPAMI.2004.1262334
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884036899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1262334</ieee_id><sourcerecordid>2427776711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-111992f5a8abce0d46b0038de4b53bc1fc9653b322c5c79984c7d11d094923403</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3-AQUJHryl7leS3WMpWgst9lDPy2YzkS1JN2YTxX_v1gYET55mhnnegXkQuiZ4SgiWD9vNbL2cUoz5lNCUMsZP0JhIJmOWMHmKxpikNBaCihG68H6HMeEJZudoRBKWpULwMZKb1uU6t5X1nTWRb7SBuLM1RB-2ABfVroDK7t_CqKPGgoFP6yFarNeX6KzUlYeroU7Q69Pjdv4cr14Wy_lsFRvOWRcTQqSkZaKFzg3ggqc5xkwUwPOE5YaURqahYZSaxGRSCm6ygpACSy4p45hN0P3xbtO69x58p2rrDVSV3oPrvUrDIyL7B0hFQgVnPIB3f8Cd69t9eEIFJ5ilQsoA0SNkWud9C6VqWlvr9ksRrA761Y9-ddCvBv0hdDtc7vMait_I4DsAN0fAAsDveoh_A0nehrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884036899</pqid></control><display><type>article</type><title>Probabilistic space-time video modeling via piecewise GMM</title><source>IEEE Electronic Library (IEL)</source><creator>Greenspan, H. ; Goldberger, J. ; Mayer, A.</creator><creatorcontrib>Greenspan, H. ; Goldberger, J. ; Mayer, A.</creatorcontrib><description>In this paper, we describe a statistical video representation and modeling scheme. Video representation schemes are needed to segment a video stream into meaningful video-objects, useful for later indexing and retrieval applications. In the proposed methodology, unsupervised clustering via Gaussian mixture modeling extracts coherent space-time regions in feature space, and corresponding coherent segments (video-regions) in the video content. A key feature of the system is the analysis of video input as a single entity as opposed to a sequence of separate frames. Space and time are treated uniformly. The probabilistic space-time video representation scheme is extended to a piecewise GMM framework in which a succession of GMMs are extracted for the video sequence, instead of a single global model for the entire sequence. The piecewise GMM framework allows for the analysis of extended video sequences and the description of nonlinear, nonconvex motion patterns. The extracted space-time regions allow for the detection and recognition of video events. Results of segmenting video content into static versus dynamic video regions and video content editing are presented.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2004.1262334</identifier><identifier>PMID: 15376884</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Graphics ; Data mining ; Event detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Indexing ; Information retrieval ; Information Storage and Retrieval - methods ; Jacobian matrices ; Models, Statistical ; Normal Distribution ; Numerical Analysis, Computer-Assisted ; Pattern analysis ; Pattern Recognition, Automated ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Streaming media ; Studies ; Subtraction Technique ; Video compression ; Video Recording - methods ; Video sequences</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2004-03, Vol.26 (3), p.384-396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-111992f5a8abce0d46b0038de4b53bc1fc9653b322c5c79984c7d11d094923403</citedby><cites>FETCH-LOGICAL-c443t-111992f5a8abce0d46b0038de4b53bc1fc9653b322c5c79984c7d11d094923403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1262334$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1262334$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15376884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greenspan, H.</creatorcontrib><creatorcontrib>Goldberger, J.</creatorcontrib><creatorcontrib>Mayer, A.</creatorcontrib><title>Probabilistic space-time video modeling via piecewise GMM</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, we describe a statistical video representation and modeling scheme. Video representation schemes are needed to segment a video stream into meaningful video-objects, useful for later indexing and retrieval applications. In the proposed methodology, unsupervised clustering via Gaussian mixture modeling extracts coherent space-time regions in feature space, and corresponding coherent segments (video-regions) in the video content. A key feature of the system is the analysis of video input as a single entity as opposed to a sequence of separate frames. Space and time are treated uniformly. The probabilistic space-time video representation scheme is extended to a piecewise GMM framework in which a succession of GMMs are extracted for the video sequence, instead of a single global model for the entire sequence. The piecewise GMM framework allows for the analysis of extended video sequences and the description of nonlinear, nonconvex motion patterns. The extracted space-time regions allow for the detection and recognition of video events. Results of segmenting video content into static versus dynamic video regions and video content editing are presented.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Data mining</subject><subject>Event detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Jacobian matrices</subject><subject>Models, Statistical</subject><subject>Normal Distribution</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Streaming media</subject><subject>Studies</subject><subject>Subtraction Technique</subject><subject>Video compression</subject><subject>Video Recording - methods</subject><subject>Video sequences</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQhhdRbK3-AQUJHryl7leS3WMpWgst9lDPy2YzkS1JN2YTxX_v1gYET55mhnnegXkQuiZ4SgiWD9vNbL2cUoz5lNCUMsZP0JhIJmOWMHmKxpikNBaCihG68H6HMeEJZudoRBKWpULwMZKb1uU6t5X1nTWRb7SBuLM1RB-2ABfVroDK7t_CqKPGgoFP6yFarNeX6KzUlYeroU7Q69Pjdv4cr14Wy_lsFRvOWRcTQqSkZaKFzg3ggqc5xkwUwPOE5YaURqahYZSaxGRSCm6ygpACSy4p45hN0P3xbtO69x58p2rrDVSV3oPrvUrDIyL7B0hFQgVnPIB3f8Cd69t9eEIFJ5ilQsoA0SNkWud9C6VqWlvr9ksRrA761Y9-ddCvBv0hdDtc7vMait_I4DsAN0fAAsDveoh_A0nehrA</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Greenspan, H.</creator><creator>Goldberger, J.</creator><creator>Mayer, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>Probabilistic space-time video modeling via piecewise GMM</title><author>Greenspan, H. ; Goldberger, J. ; Mayer, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-111992f5a8abce0d46b0038de4b53bc1fc9653b322c5c79984c7d11d094923403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Data mining</topic><topic>Event detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Jacobian matrices</topic><topic>Models, Statistical</topic><topic>Normal Distribution</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Streaming media</topic><topic>Studies</topic><topic>Subtraction Technique</topic><topic>Video compression</topic><topic>Video Recording - methods</topic><topic>Video sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenspan, H.</creatorcontrib><creatorcontrib>Goldberger, J.</creatorcontrib><creatorcontrib>Mayer, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Greenspan, H.</au><au>Goldberger, J.</au><au>Mayer, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic space-time video modeling via piecewise GMM</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2004-03</date><risdate>2004</risdate><volume>26</volume><issue>3</issue><spage>384</spage><epage>396</epage><pages>384-396</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>In this paper, we describe a statistical video representation and modeling scheme. Video representation schemes are needed to segment a video stream into meaningful video-objects, useful for later indexing and retrieval applications. In the proposed methodology, unsupervised clustering via Gaussian mixture modeling extracts coherent space-time regions in feature space, and corresponding coherent segments (video-regions) in the video content. A key feature of the system is the analysis of video input as a single entity as opposed to a sequence of separate frames. Space and time are treated uniformly. The probabilistic space-time video representation scheme is extended to a piecewise GMM framework in which a succession of GMMs are extracted for the video sequence, instead of a single global model for the entire sequence. The piecewise GMM framework allows for the analysis of extended video sequences and the description of nonlinear, nonconvex motion patterns. The extracted space-time regions allow for the detection and recognition of video events. Results of segmenting video content into static versus dynamic video regions and video content editing are presented.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>15376884</pmid><doi>10.1109/TPAMI.2004.1262334</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2004-03, Vol.26 (3), p.384-396
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_journals_884036899
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Computer Graphics
Data mining
Event detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Indexing
Information retrieval
Information Storage and Retrieval - methods
Jacobian matrices
Models, Statistical
Normal Distribution
Numerical Analysis, Computer-Assisted
Pattern analysis
Pattern Recognition, Automated
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Streaming media
Studies
Subtraction Technique
Video compression
Video Recording - methods
Video sequences
title Probabilistic space-time video modeling via piecewise GMM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20space-time%20video%20modeling%20via%20piecewise%20GMM&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Greenspan,%20H.&rft.date=2004-03&rft.volume=26&rft.issue=3&rft.spage=384&rft.epage=396&rft.pages=384-396&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2004.1262334&rft_dat=%3Cproquest_RIE%3E2427776711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884036899&rft_id=info:pmid/15376884&rft_ieee_id=1262334&rfr_iscdi=true