Modeling and control for smart Mesoflap aeroelastic control

This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2004-03, Vol.9 (1), p.30-39
Hauptverfasser: Tharayil, M.L., Alleyne, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 30
container_title IEEE/ASME transactions on mechatronics
container_volume 9
creator Tharayil, M.L.
Alleyne, A.G.
description This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.
doi_str_mv 10.1109/TMECH.2004.823852
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884032520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1275476</ieee_id><sourcerecordid>28754434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwAxBLxMCWcv5KbDGhqlCkVixFYrOc5IxSpXGx04F_j0tBSExMd8Pznu59CLmkMKEU9O1qOZvOJwxATBTjSrIjMqJa0ByoeD1OOyieC8HlKTmLcQ0JpEBH5G7pG-za_i2zfZPVvh-C7zLnQxY3NgzZEqN3nd1mFoPHzsahrX-wc3LibBfx4nuOycvDbDWd54vnx6fp_SKvuWRDrkFZYRvunGWVo40QVgtuKyxkzXVVVFVBLVQNohZOcilK1AokFboqHeiCj8nN4e42-PcdxsFs2lhj19ke_S4apkqZqol_gFwVEsoEXv8B134X-lTCKCWAM8kgQfQA1cHHGNCZbWiTlA9Dweylmy_pZi_dHKSnzNUh0yLiL8_Sg2XBPwFTcXzn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884032520</pqid></control><display><type>article</type><title>Modeling and control for smart Mesoflap aeroelastic control</title><source>IEEE Electronic Library (IEL)</source><creator>Tharayil, M.L. ; Alleyne, A.G.</creator><creatorcontrib>Tharayil, M.L. ; Alleyne, A.G.</creatorcontrib><description>This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2004.823852</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Control systems ; Electric shock ; Error correction ; Hysteresis ; PD control ; Shape control ; Shape memory alloys ; Three-term control ; Weight control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2004-03, Vol.9 (1), p.30-39</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</citedby><cites>FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1275476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1275476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tharayil, M.L.</creatorcontrib><creatorcontrib>Alleyne, A.G.</creatorcontrib><title>Modeling and control for smart Mesoflap aeroelastic control</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.</description><subject>Actuators</subject><subject>Control systems</subject><subject>Electric shock</subject><subject>Error correction</subject><subject>Hysteresis</subject><subject>PD control</subject><subject>Shape control</subject><subject>Shape memory alloys</subject><subject>Three-term control</subject><subject>Weight control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkD1PwzAQhi0EEqXwAxBLxMCWcv5KbDGhqlCkVixFYrOc5IxSpXGx04F_j0tBSExMd8Pznu59CLmkMKEU9O1qOZvOJwxATBTjSrIjMqJa0ByoeD1OOyieC8HlKTmLcQ0JpEBH5G7pG-za_i2zfZPVvh-C7zLnQxY3NgzZEqN3nd1mFoPHzsahrX-wc3LibBfx4nuOycvDbDWd54vnx6fp_SKvuWRDrkFZYRvunGWVo40QVgtuKyxkzXVVVFVBLVQNohZOcilK1AokFboqHeiCj8nN4e42-PcdxsFs2lhj19ke_S4apkqZqol_gFwVEsoEXv8B134X-lTCKCWAM8kgQfQA1cHHGNCZbWiTlA9Dweylmy_pZi_dHKSnzNUh0yLiL8_Sg2XBPwFTcXzn</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Tharayil, M.L.</creator><creator>Alleyne, A.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20040301</creationdate><title>Modeling and control for smart Mesoflap aeroelastic control</title><author>Tharayil, M.L. ; Alleyne, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actuators</topic><topic>Control systems</topic><topic>Electric shock</topic><topic>Error correction</topic><topic>Hysteresis</topic><topic>PD control</topic><topic>Shape control</topic><topic>Shape memory alloys</topic><topic>Three-term control</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tharayil, M.L.</creatorcontrib><creatorcontrib>Alleyne, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tharayil, M.L.</au><au>Alleyne, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and control for smart Mesoflap aeroelastic control</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2004-03-01</date><risdate>2004</risdate><volume>9</volume><issue>1</issue><spage>30</spage><epage>39</epage><pages>30-39</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2004.823852</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2004-03, Vol.9 (1), p.30-39
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_884032520
source IEEE Electronic Library (IEL)
subjects Actuators
Control systems
Electric shock
Error correction
Hysteresis
PD control
Shape control
Shape memory alloys
Three-term control
Weight control
title Modeling and control for smart Mesoflap aeroelastic control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20control%20for%20smart%20Mesoflap%20aeroelastic%20control&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Tharayil,%20M.L.&rft.date=2004-03-01&rft.volume=9&rft.issue=1&rft.spage=30&rft.epage=39&rft.pages=30-39&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2004.823852&rft_dat=%3Cproquest_RIE%3E28754434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884032520&rft_id=info:pmid/&rft_ieee_id=1275476&rfr_iscdi=true