Modeling and control for smart Mesoflap aeroelastic control
This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2004-03, Vol.9 (1), p.30-39 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 9 |
creator | Tharayil, M.L. Alleyne, A.G. |
description | This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem. |
doi_str_mv | 10.1109/TMECH.2004.823852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884032520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1275476</ieee_id><sourcerecordid>28754434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwAxBLxMCWcv5KbDGhqlCkVixFYrOc5IxSpXGx04F_j0tBSExMd8Pznu59CLmkMKEU9O1qOZvOJwxATBTjSrIjMqJa0ByoeD1OOyieC8HlKTmLcQ0JpEBH5G7pG-za_i2zfZPVvh-C7zLnQxY3NgzZEqN3nd1mFoPHzsahrX-wc3LibBfx4nuOycvDbDWd54vnx6fp_SKvuWRDrkFZYRvunGWVo40QVgtuKyxkzXVVVFVBLVQNohZOcilK1AokFboqHeiCj8nN4e42-PcdxsFs2lhj19ke_S4apkqZqol_gFwVEsoEXv8B134X-lTCKCWAM8kgQfQA1cHHGNCZbWiTlA9Dweylmy_pZi_dHKSnzNUh0yLiL8_Sg2XBPwFTcXzn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884032520</pqid></control><display><type>article</type><title>Modeling and control for smart Mesoflap aeroelastic control</title><source>IEEE Electronic Library (IEL)</source><creator>Tharayil, M.L. ; Alleyne, A.G.</creator><creatorcontrib>Tharayil, M.L. ; Alleyne, A.G.</creatorcontrib><description>This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2004.823852</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Control systems ; Electric shock ; Error correction ; Hysteresis ; PD control ; Shape control ; Shape memory alloys ; Three-term control ; Weight control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2004-03, Vol.9 (1), p.30-39</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</citedby><cites>FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1275476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1275476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tharayil, M.L.</creatorcontrib><creatorcontrib>Alleyne, A.G.</creatorcontrib><title>Modeling and control for smart Mesoflap aeroelastic control</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.</description><subject>Actuators</subject><subject>Control systems</subject><subject>Electric shock</subject><subject>Error correction</subject><subject>Hysteresis</subject><subject>PD control</subject><subject>Shape control</subject><subject>Shape memory alloys</subject><subject>Three-term control</subject><subject>Weight control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkD1PwzAQhi0EEqXwAxBLxMCWcv5KbDGhqlCkVixFYrOc5IxSpXGx04F_j0tBSExMd8Pznu59CLmkMKEU9O1qOZvOJwxATBTjSrIjMqJa0ByoeD1OOyieC8HlKTmLcQ0JpEBH5G7pG-za_i2zfZPVvh-C7zLnQxY3NgzZEqN3nd1mFoPHzsahrX-wc3LibBfx4nuOycvDbDWd54vnx6fp_SKvuWRDrkFZYRvunGWVo40QVgtuKyxkzXVVVFVBLVQNohZOcilK1AokFboqHeiCj8nN4e42-PcdxsFs2lhj19ke_S4apkqZqol_gFwVEsoEXv8B134X-lTCKCWAM8kgQfQA1cHHGNCZbWiTlA9Dweylmy_pZi_dHKSnzNUh0yLiL8_Sg2XBPwFTcXzn</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Tharayil, M.L.</creator><creator>Alleyne, A.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20040301</creationdate><title>Modeling and control for smart Mesoflap aeroelastic control</title><author>Tharayil, M.L. ; Alleyne, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-908a4ad3ffa2bf1d44a943abe65c39b6bb61a0bdee94f53547e9805149b7f0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actuators</topic><topic>Control systems</topic><topic>Electric shock</topic><topic>Error correction</topic><topic>Hysteresis</topic><topic>PD control</topic><topic>Shape control</topic><topic>Shape memory alloys</topic><topic>Three-term control</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tharayil, M.L.</creatorcontrib><creatorcontrib>Alleyne, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tharayil, M.L.</au><au>Alleyne, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and control for smart Mesoflap aeroelastic control</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2004-03-01</date><risdate>2004</risdate><volume>9</volume><issue>1</issue><spage>30</spage><epage>39</epage><pages>30-39</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2004.823852</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2004-03, Vol.9 (1), p.30-39 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_884032520 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Control systems Electric shock Error correction Hysteresis PD control Shape control Shape memory alloys Three-term control Weight control |
title | Modeling and control for smart Mesoflap aeroelastic control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20control%20for%20smart%20Mesoflap%20aeroelastic%20control&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Tharayil,%20M.L.&rft.date=2004-03-01&rft.volume=9&rft.issue=1&rft.spage=30&rft.epage=39&rft.pages=30-39&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2004.823852&rft_dat=%3Cproquest_RIE%3E28754434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884032520&rft_id=info:pmid/&rft_ieee_id=1275476&rfr_iscdi=true |