Chromosomal plasticity: mitigating the impacts of herbivory
Endoreduplication, the replication of the genome without mitosis, leads to endopolyploidy, an increase in cellular chromosome number. Although endoreduplication is widespread among angiosperms and other groups of eukaryotes, the degree to which this process is plastic under varying environmental con...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2011-08, Vol.92 (8), p.1691-1698 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1698 |
---|---|
container_issue | 8 |
container_start_page | 1691 |
container_title | Ecology (Durham) |
container_volume | 92 |
creator | Scholes, Daniel R Paige, Ken N |
description | Endoreduplication, the replication of the genome without mitosis, leads to endopolyploidy, an increase in cellular chromosome number. Although endoreduplication is widespread among angiosperms and other groups of eukaryotes, the degree to which this process is plastic under varying environmental conditions and its potential adaptive significance are not known. Here, using flow cytometry, we measured plasticity in chromosome number following the removal of apical dominance (simulating natural herbivory) in two ecotypes of Arabidopsis thaliana: Columbia and Landsberg erecta. We report that endopolyploidy of clipped Columbia plants was significantly different than unclipped controls following the removal of apical dominance and regrowth, and that cellular ploidy is positively associated with attributes of fitness (biomass, flower, fruit, and seed production). In contrast, clipped Landsberg erecta showed no significant differences in endopolyploidy and a decrease in seed production compared to unclipped controls; representing a significant genotype × environment interaction between ecotypes. Altering ploidy via endoreduplication adds a previously unknown way in which plants may be able to cope with environmental stress: enhancing regrowth rates and fitness following plant damage. |
doi_str_mv | 10.1890/10-2269.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_883917044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23034894</jstor_id><sourcerecordid>23034894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6221-ba8bfca447a788a0219f0085cfb6a33893b671c863910176c3f3aae05d2b3b983</originalsourceid><addsrcrecordid>eNqF0k2L1DAYB_AgijuuHvwAalFEPHTNS9MmepJhfYEFD7oHT-FpJpnJ0DbdJKP225vS0ZWFxVxyyC_Pk-dPEHpM8BkREr8huKS0lmfkDloRyWQpSYPvohXGhJay5uIEPYhxj_MilbiPTiiRmFeMr9C79S743kffQ1eMHcTktEvT26J3yW0huWFbpJ0pXD-CTrHwttiZ0LofPkwP0T0LXTSPjvspuvxw_m39qbz48vHz-v1FCTWlpGxBtFZDVTXQCAE4N7cYC65tWwNjQrK2bogWNZMEk6bWzDIAg_mGtqyVgp2iV0vdMfirg4lJ9S5q03UwGH-ISuKGNA3n_5dC5GQEwXWWz2_IvT-EIY-REZvzq6qMXi9IBx9jMFaNwfUQJkWwmpOf9zl5RbJ9eix4aHuz-Sv_RJ3ByyOAqKGzAQbt4rWrKso5nR1f3E_Xmen2jup8_Z1iQiQVpJbzA54s9_Yx-XBdl2FWCTkP82w5t-AVbEPuffk1F6jzp5CCNziLF4uANI1-UCbCP-3GjVXpV7pN3YjjN21xwOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883917044</pqid></control><display><type>article</type><title>Chromosomal plasticity: mitigating the impacts of herbivory</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Scholes, Daniel R ; Paige, Ken N</creator><contributor>Wolfe, LM</contributor><creatorcontrib>Scholes, Daniel R ; Paige, Ken N ; Wolfe, LM</creatorcontrib><description>Endoreduplication, the replication of the genome without mitosis, leads to endopolyploidy, an increase in cellular chromosome number. Although endoreduplication is widespread among angiosperms and other groups of eukaryotes, the degree to which this process is plastic under varying environmental conditions and its potential adaptive significance are not known. Here, using flow cytometry, we measured plasticity in chromosome number following the removal of apical dominance (simulating natural herbivory) in two ecotypes of Arabidopsis thaliana: Columbia and Landsberg erecta. We report that endopolyploidy of clipped Columbia plants was significantly different than unclipped controls following the removal of apical dominance and regrowth, and that cellular ploidy is positively associated with attributes of fitness (biomass, flower, fruit, and seed production). In contrast, clipped Landsberg erecta showed no significant differences in endopolyploidy and a decrease in seed production compared to unclipped controls; representing a significant genotype × environment interaction between ecotypes. Altering ploidy via endoreduplication adds a previously unknown way in which plants may be able to cope with environmental stress: enhancing regrowth rates and fitness following plant damage.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/10-2269.1</identifier><identifier>PMID: 21905435</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Adaptation, Physiological - genetics ; Animal and plant ecology ; Animal, plant and microbial ecology ; Apical dominance ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis thaliana ; Biological and medical sciences ; biomass ; Cell division ; chromosomal plasticity ; chromosome number ; Chromosomes ; Chromosomes, Plant - genetics ; Chromosomes, Plant - physiology ; compensation ; DNA ; DNA content ; Ecological genetics ; ecotypes ; Endopolyploidy ; endoreduplication ; environmental factors ; Eukaryotes ; eukaryotic cells ; Evolution ; fitness ; Flow Cytometry ; flowers ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; Gene Duplication ; Gene Expression Regulation, Plant ; General aspects ; genome ; Genome, Plant ; Genotype & phenotype ; Herbivores ; Inflorescences ; mitosis ; Plant cells ; plant damage ; Plants ; Ploidies ; regrowth</subject><ispartof>Ecology (Durham), 2011-08, Vol.92 (8), p.1691-1698</ispartof><rights>Copyright © 2011 Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6221-ba8bfca447a788a0219f0085cfb6a33893b671c863910176c3f3aae05d2b3b983</citedby><cites>FETCH-LOGICAL-a6221-ba8bfca447a788a0219f0085cfb6a33893b671c863910176c3f3aae05d2b3b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23034894$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23034894$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24425525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21905435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wolfe, LM</contributor><creatorcontrib>Scholes, Daniel R</creatorcontrib><creatorcontrib>Paige, Ken N</creatorcontrib><title>Chromosomal plasticity: mitigating the impacts of herbivory</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Endoreduplication, the replication of the genome without mitosis, leads to endopolyploidy, an increase in cellular chromosome number. Although endoreduplication is widespread among angiosperms and other groups of eukaryotes, the degree to which this process is plastic under varying environmental conditions and its potential adaptive significance are not known. Here, using flow cytometry, we measured plasticity in chromosome number following the removal of apical dominance (simulating natural herbivory) in two ecotypes of Arabidopsis thaliana: Columbia and Landsberg erecta. We report that endopolyploidy of clipped Columbia plants was significantly different than unclipped controls following the removal of apical dominance and regrowth, and that cellular ploidy is positively associated with attributes of fitness (biomass, flower, fruit, and seed production). In contrast, clipped Landsberg erecta showed no significant differences in endopolyploidy and a decrease in seed production compared to unclipped controls; representing a significant genotype × environment interaction between ecotypes. Altering ploidy via endoreduplication adds a previously unknown way in which plants may be able to cope with environmental stress: enhancing regrowth rates and fitness following plant damage.</description><subject>Adaptation, Physiological - genetics</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Apical dominance</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Cell division</subject><subject>chromosomal plasticity</subject><subject>chromosome number</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Chromosomes, Plant - physiology</subject><subject>compensation</subject><subject>DNA</subject><subject>DNA content</subject><subject>Ecological genetics</subject><subject>ecotypes</subject><subject>Endopolyploidy</subject><subject>endoreduplication</subject><subject>environmental factors</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Evolution</subject><subject>fitness</subject><subject>Flow Cytometry</subject><subject>flowers</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Duplication</subject><subject>Gene Expression Regulation, Plant</subject><subject>General aspects</subject><subject>genome</subject><subject>Genome, Plant</subject><subject>Genotype & phenotype</subject><subject>Herbivores</subject><subject>Inflorescences</subject><subject>mitosis</subject><subject>Plant cells</subject><subject>plant damage</subject><subject>Plants</subject><subject>Ploidies</subject><subject>regrowth</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k2L1DAYB_AgijuuHvwAalFEPHTNS9MmepJhfYEFD7oHT-FpJpnJ0DbdJKP225vS0ZWFxVxyyC_Pk-dPEHpM8BkREr8huKS0lmfkDloRyWQpSYPvohXGhJay5uIEPYhxj_MilbiPTiiRmFeMr9C79S743kffQ1eMHcTktEvT26J3yW0huWFbpJ0pXD-CTrHwttiZ0LofPkwP0T0LXTSPjvspuvxw_m39qbz48vHz-v1FCTWlpGxBtFZDVTXQCAE4N7cYC65tWwNjQrK2bogWNZMEk6bWzDIAg_mGtqyVgp2iV0vdMfirg4lJ9S5q03UwGH-ISuKGNA3n_5dC5GQEwXWWz2_IvT-EIY-REZvzq6qMXi9IBx9jMFaNwfUQJkWwmpOf9zl5RbJ9eix4aHuz-Sv_RJ3ByyOAqKGzAQbt4rWrKso5nR1f3E_Xmen2jup8_Z1iQiQVpJbzA54s9_Yx-XBdl2FWCTkP82w5t-AVbEPuffk1F6jzp5CCNziLF4uANI1-UCbCP-3GjVXpV7pN3YjjN21xwOk</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Scholes, Daniel R</creator><creator>Paige, Ken N</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201108</creationdate><title>Chromosomal plasticity: mitigating the impacts of herbivory</title><author>Scholes, Daniel R ; Paige, Ken N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6221-ba8bfca447a788a0219f0085cfb6a33893b671c863910176c3f3aae05d2b3b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Apical dominance</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Cell division</topic><topic>chromosomal plasticity</topic><topic>chromosome number</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Chromosomes, Plant - physiology</topic><topic>compensation</topic><topic>DNA</topic><topic>DNA content</topic><topic>Ecological genetics</topic><topic>ecotypes</topic><topic>Endopolyploidy</topic><topic>endoreduplication</topic><topic>environmental factors</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Evolution</topic><topic>fitness</topic><topic>Flow Cytometry</topic><topic>flowers</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Duplication</topic><topic>Gene Expression Regulation, Plant</topic><topic>General aspects</topic><topic>genome</topic><topic>Genome, Plant</topic><topic>Genotype & phenotype</topic><topic>Herbivores</topic><topic>Inflorescences</topic><topic>mitosis</topic><topic>Plant cells</topic><topic>plant damage</topic><topic>Plants</topic><topic>Ploidies</topic><topic>regrowth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, Daniel R</creatorcontrib><creatorcontrib>Paige, Ken N</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, Daniel R</au><au>Paige, Ken N</au><au>Wolfe, LM</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromosomal plasticity: mitigating the impacts of herbivory</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-08</date><risdate>2011</risdate><volume>92</volume><issue>8</issue><spage>1691</spage><epage>1698</epage><pages>1691-1698</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Endoreduplication, the replication of the genome without mitosis, leads to endopolyploidy, an increase in cellular chromosome number. Although endoreduplication is widespread among angiosperms and other groups of eukaryotes, the degree to which this process is plastic under varying environmental conditions and its potential adaptive significance are not known. Here, using flow cytometry, we measured plasticity in chromosome number following the removal of apical dominance (simulating natural herbivory) in two ecotypes of Arabidopsis thaliana: Columbia and Landsberg erecta. We report that endopolyploidy of clipped Columbia plants was significantly different than unclipped controls following the removal of apical dominance and regrowth, and that cellular ploidy is positively associated with attributes of fitness (biomass, flower, fruit, and seed production). In contrast, clipped Landsberg erecta showed no significant differences in endopolyploidy and a decrease in seed production compared to unclipped controls; representing a significant genotype × environment interaction between ecotypes. Altering ploidy via endoreduplication adds a previously unknown way in which plants may be able to cope with environmental stress: enhancing regrowth rates and fitness following plant damage.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>21905435</pmid><doi>10.1890/10-2269.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2011-08, Vol.92 (8), p.1691-1698 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_journals_883917044 |
source | MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Adaptation, Physiological - genetics Animal and plant ecology Animal, plant and microbial ecology Apical dominance Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Arabidopsis thaliana Biological and medical sciences biomass Cell division chromosomal plasticity chromosome number Chromosomes Chromosomes, Plant - genetics Chromosomes, Plant - physiology compensation DNA DNA content Ecological genetics ecotypes Endopolyploidy endoreduplication environmental factors Eukaryotes eukaryotic cells Evolution fitness Flow Cytometry flowers Flowers & plants Fundamental and applied biological sciences. Psychology Gene Duplication Gene Expression Regulation, Plant General aspects genome Genome, Plant Genotype & phenotype Herbivores Inflorescences mitosis Plant cells plant damage Plants Ploidies regrowth |
title | Chromosomal plasticity: mitigating the impacts of herbivory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromosomal%20plasticity:%20mitigating%20the%20impacts%20of%20herbivory&rft.jtitle=Ecology%20(Durham)&rft.au=Scholes,%20Daniel%20R&rft.date=2011-08&rft.volume=92&rft.issue=8&rft.spage=1691&rft.epage=1698&rft.pages=1691-1698&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/10-2269.1&rft_dat=%3Cjstor_proqu%3E23034894%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883917044&rft_id=info:pmid/21905435&rft_jstor_id=23034894&rfr_iscdi=true |