Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples

Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2011-09, Vol.5 (5), p.927-932
Hauptverfasser: Zonoobi, D., Kassim, A. A., Venkatesh, Y. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 5
container_start_page 927
container_title IEEE journal of selected topics in signal processing
container_volume 5
creator Zonoobi, D.
Kassim, A. A.
Venkatesh, Y. V.
description Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0
doi_str_mv 10.1109/JSTSP.2011.2160711
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883830128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5934357</ieee_id><sourcerecordid>1031300700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQCMEElD4A7BYTCwpPjsfzogqKEUgPlLmyLXPyFUSBztB9N-TUsTAdDe8d9K9KDoDOgWgxdV9uSyfp4wCTBlkNAfYi46gSCCmiUj2tztncZKm_DA6DmFNaZpnkBxFL3PbWrJoNX4RGUjZSR9svyGPKMPgkRjnSWnfW1mTV1SuDb0fVG9dS4x3DZm5pvMYgv1EUsqmqzGcRAdG1gFPf-ckeru9Wc7u4oen-WJ2_RArXvA-BqV4hhqYoSDUSqxMgTxXLNWZWVHNpaZGCa1ZDphTDiLjOlOSMwUyyUZ5El3u7nbefQwY-qqxQWFdyxbdECoYJU5pTumIXvxD127w40-hEoILToGJEWI7SHkXgkdTdd420m_GS9U2cvUTudpGrn4jj9L5TrKI-CekBU94mvNvWd147A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883830128</pqid></control><display><type>article</type><title>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Zonoobi, D. ; Kassim, A. A. ; Venkatesh, Y. V.</creator><creatorcontrib>Zonoobi, D. ; Kassim, A. A. ; Venkatesh, Y. V.</creatorcontrib><description>Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 &lt;; p &lt;; 1) (pseudo-) norm is preferred. In this paper, we explore the use of the Gini index (GI), of a discrete signal, as a more effective measure of its sparsity for a significantly improved performance in its reconstruction from compressive samples. We also successfully incorporate the GI into a stochastic optimization algorithm for signal reconstruction from compressive samples and illustrate our approach with both synthetic and real signals/images.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2011.2160711</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressive sensing (CS) ; Gini index (GI) ; Image coding ; Image reconstruction ; Minimization ; Noise ; Noise measurement ; non-convex optimization ; Norms ; Optimization ; Sampling ; Signal processing ; Signal reconstruction ; simultaneous perturbation stochastic approximation (SPSA) ; sparsity measures ; Stochasticity ; Transforms</subject><ispartof>IEEE journal of selected topics in signal processing, 2011-09, Vol.5 (5), p.927-932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</citedby><cites>FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5934357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5934357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zonoobi, D.</creatorcontrib><creatorcontrib>Kassim, A. A.</creatorcontrib><creatorcontrib>Venkatesh, Y. V.</creatorcontrib><title>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 &lt;; p &lt;; 1) (pseudo-) norm is preferred. In this paper, we explore the use of the Gini index (GI), of a discrete signal, as a more effective measure of its sparsity for a significantly improved performance in its reconstruction from compressive samples. We also successfully incorporate the GI into a stochastic optimization algorithm for signal reconstruction from compressive samples and illustrate our approach with both synthetic and real signals/images.</description><subject>Algorithms</subject><subject>Compressive sensing (CS)</subject><subject>Gini index (GI)</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Minimization</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>non-convex optimization</subject><subject>Norms</subject><subject>Optimization</subject><subject>Sampling</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>simultaneous perturbation stochastic approximation (SPSA)</subject><subject>sparsity measures</subject><subject>Stochasticity</subject><subject>Transforms</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQQCMEElD4A7BYTCwpPjsfzogqKEUgPlLmyLXPyFUSBztB9N-TUsTAdDe8d9K9KDoDOgWgxdV9uSyfp4wCTBlkNAfYi46gSCCmiUj2tztncZKm_DA6DmFNaZpnkBxFL3PbWrJoNX4RGUjZSR9svyGPKMPgkRjnSWnfW1mTV1SuDb0fVG9dS4x3DZm5pvMYgv1EUsqmqzGcRAdG1gFPf-ckeru9Wc7u4oen-WJ2_RArXvA-BqV4hhqYoSDUSqxMgTxXLNWZWVHNpaZGCa1ZDphTDiLjOlOSMwUyyUZ5El3u7nbefQwY-qqxQWFdyxbdECoYJU5pTumIXvxD127w40-hEoILToGJEWI7SHkXgkdTdd420m_GS9U2cvUTudpGrn4jj9L5TrKI-CekBU94mvNvWd147A</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Zonoobi, D.</creator><creator>Kassim, A. A.</creator><creator>Venkatesh, Y. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201109</creationdate><title>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</title><author>Zonoobi, D. ; Kassim, A. A. ; Venkatesh, Y. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Compressive sensing (CS)</topic><topic>Gini index (GI)</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Minimization</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>non-convex optimization</topic><topic>Norms</topic><topic>Optimization</topic><topic>Sampling</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>simultaneous perturbation stochastic approximation (SPSA)</topic><topic>sparsity measures</topic><topic>Stochasticity</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zonoobi, D.</creatorcontrib><creatorcontrib>Kassim, A. A.</creatorcontrib><creatorcontrib>Venkatesh, Y. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zonoobi, D.</au><au>Kassim, A. A.</au><au>Venkatesh, Y. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2011-09</date><risdate>2011</risdate><volume>5</volume><issue>5</issue><spage>927</spage><epage>932</epage><pages>927-932</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 &lt;; p &lt;; 1) (pseudo-) norm is preferred. In this paper, we explore the use of the Gini index (GI), of a discrete signal, as a more effective measure of its sparsity for a significantly improved performance in its reconstruction from compressive samples. We also successfully incorporate the GI into a stochastic optimization algorithm for signal reconstruction from compressive samples and illustrate our approach with both synthetic and real signals/images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2011.2160711</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2011-09, Vol.5 (5), p.927-932
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_journals_883830128
source IEEE Electronic Library (IEL)
subjects Algorithms
Compressive sensing (CS)
Gini index (GI)
Image coding
Image reconstruction
Minimization
Noise
Noise measurement
non-convex optimization
Norms
Optimization
Sampling
Signal processing
Signal reconstruction
simultaneous perturbation stochastic approximation (SPSA)
sparsity measures
Stochasticity
Transforms
title Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gini%20Index%20as%20Sparsity%20Measure%20for%20Signal%20Reconstruction%20from%20Compressive%20Samples&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Zonoobi,%20D.&rft.date=2011-09&rft.volume=5&rft.issue=5&rft.spage=927&rft.epage=932&rft.pages=927-932&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2011.2160711&rft_dat=%3Cproquest_RIE%3E1031300700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883830128&rft_id=info:pmid/&rft_ieee_id=5934357&rfr_iscdi=true