Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples
Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2011-09, Vol.5 (5), p.927-932 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 5 |
container_start_page | 927 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 5 |
creator | Zonoobi, D. Kassim, A. A. Venkatesh, Y. V. |
description | Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 |
doi_str_mv | 10.1109/JSTSP.2011.2160711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883830128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5934357</ieee_id><sourcerecordid>1031300700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQCMEElD4A7BYTCwpPjsfzogqKEUgPlLmyLXPyFUSBztB9N-TUsTAdDe8d9K9KDoDOgWgxdV9uSyfp4wCTBlkNAfYi46gSCCmiUj2tztncZKm_DA6DmFNaZpnkBxFL3PbWrJoNX4RGUjZSR9svyGPKMPgkRjnSWnfW1mTV1SuDb0fVG9dS4x3DZm5pvMYgv1EUsqmqzGcRAdG1gFPf-ckeru9Wc7u4oen-WJ2_RArXvA-BqV4hhqYoSDUSqxMgTxXLNWZWVHNpaZGCa1ZDphTDiLjOlOSMwUyyUZ5El3u7nbefQwY-qqxQWFdyxbdECoYJU5pTumIXvxD127w40-hEoILToGJEWI7SHkXgkdTdd420m_GS9U2cvUTudpGrn4jj9L5TrKI-CekBU94mvNvWd147A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883830128</pqid></control><display><type>article</type><title>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Zonoobi, D. ; Kassim, A. A. ; Venkatesh, Y. V.</creator><creatorcontrib>Zonoobi, D. ; Kassim, A. A. ; Venkatesh, Y. V.</creatorcontrib><description>Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 <; p <; 1) (pseudo-) norm is preferred. In this paper, we explore the use of the Gini index (GI), of a discrete signal, as a more effective measure of its sparsity for a significantly improved performance in its reconstruction from compressive samples. We also successfully incorporate the GI into a stochastic optimization algorithm for signal reconstruction from compressive samples and illustrate our approach with both synthetic and real signals/images.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2011.2160711</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressive sensing (CS) ; Gini index (GI) ; Image coding ; Image reconstruction ; Minimization ; Noise ; Noise measurement ; non-convex optimization ; Norms ; Optimization ; Sampling ; Signal processing ; Signal reconstruction ; simultaneous perturbation stochastic approximation (SPSA) ; sparsity measures ; Stochasticity ; Transforms</subject><ispartof>IEEE journal of selected topics in signal processing, 2011-09, Vol.5 (5), p.927-932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</citedby><cites>FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5934357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5934357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zonoobi, D.</creatorcontrib><creatorcontrib>Kassim, A. A.</creatorcontrib><creatorcontrib>Venkatesh, Y. V.</creatorcontrib><title>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 <; p <; 1) (pseudo-) norm is preferred. In this paper, we explore the use of the Gini index (GI), of a discrete signal, as a more effective measure of its sparsity for a significantly improved performance in its reconstruction from compressive samples. We also successfully incorporate the GI into a stochastic optimization algorithm for signal reconstruction from compressive samples and illustrate our approach with both synthetic and real signals/images.</description><subject>Algorithms</subject><subject>Compressive sensing (CS)</subject><subject>Gini index (GI)</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Minimization</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>non-convex optimization</subject><subject>Norms</subject><subject>Optimization</subject><subject>Sampling</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>simultaneous perturbation stochastic approximation (SPSA)</subject><subject>sparsity measures</subject><subject>Stochasticity</subject><subject>Transforms</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQQCMEElD4A7BYTCwpPjsfzogqKEUgPlLmyLXPyFUSBztB9N-TUsTAdDe8d9K9KDoDOgWgxdV9uSyfp4wCTBlkNAfYi46gSCCmiUj2tztncZKm_DA6DmFNaZpnkBxFL3PbWrJoNX4RGUjZSR9svyGPKMPgkRjnSWnfW1mTV1SuDb0fVG9dS4x3DZm5pvMYgv1EUsqmqzGcRAdG1gFPf-ckeru9Wc7u4oen-WJ2_RArXvA-BqV4hhqYoSDUSqxMgTxXLNWZWVHNpaZGCa1ZDphTDiLjOlOSMwUyyUZ5El3u7nbefQwY-qqxQWFdyxbdECoYJU5pTumIXvxD127w40-hEoILToGJEWI7SHkXgkdTdd420m_GS9U2cvUTudpGrn4jj9L5TrKI-CekBU94mvNvWd147A</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Zonoobi, D.</creator><creator>Kassim, A. A.</creator><creator>Venkatesh, Y. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201109</creationdate><title>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</title><author>Zonoobi, D. ; Kassim, A. A. ; Venkatesh, Y. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1cc36ed12f018cb8bf9e37c25d6fb0d3ad0fc8dd271e7031863d6ca32c1a46cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Compressive sensing (CS)</topic><topic>Gini index (GI)</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Minimization</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>non-convex optimization</topic><topic>Norms</topic><topic>Optimization</topic><topic>Sampling</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>simultaneous perturbation stochastic approximation (SPSA)</topic><topic>sparsity measures</topic><topic>Stochasticity</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zonoobi, D.</creatorcontrib><creatorcontrib>Kassim, A. A.</creatorcontrib><creatorcontrib>Venkatesh, Y. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zonoobi, D.</au><au>Kassim, A. A.</au><au>Venkatesh, Y. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2011-09</date><risdate>2011</risdate><volume>5</volume><issue>5</issue><spage>927</spage><epage>932</epage><pages>927-932</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly measured using the l 0 norm, even though, in practice, the l 1 or the l p ( 0 <; p <; 1) (pseudo-) norm is preferred. In this paper, we explore the use of the Gini index (GI), of a discrete signal, as a more effective measure of its sparsity for a significantly improved performance in its reconstruction from compressive samples. We also successfully incorporate the GI into a stochastic optimization algorithm for signal reconstruction from compressive samples and illustrate our approach with both synthetic and real signals/images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2011.2160711</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2011-09, Vol.5 (5), p.927-932 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_journals_883830128 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Compressive sensing (CS) Gini index (GI) Image coding Image reconstruction Minimization Noise Noise measurement non-convex optimization Norms Optimization Sampling Signal processing Signal reconstruction simultaneous perturbation stochastic approximation (SPSA) sparsity measures Stochasticity Transforms |
title | Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gini%20Index%20as%20Sparsity%20Measure%20for%20Signal%20Reconstruction%20from%20Compressive%20Samples&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Zonoobi,%20D.&rft.date=2011-09&rft.volume=5&rft.issue=5&rft.spage=927&rft.epage=932&rft.pages=927-932&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2011.2160711&rft_dat=%3Cproquest_RIE%3E1031300700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883830128&rft_id=info:pmid/&rft_ieee_id=5934357&rfr_iscdi=true |