Unbalanced phase-to-phase voltage compensators applied to radial distribution feeders

This paper describes an application of a thyristor-controlled reactive power compensator (TCRC), which aims at individually controlling phase-to-phase voltage imbalancing in radial distribution feeders. The compensator model is straightforward included into the classical three-phase load flow formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2004-04, Vol.19 (2), p.806-812
1. Verfasser: Pires, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 2
container_start_page 806
container_title IEEE transactions on power delivery
container_volume 19
creator Pires, R.C.
description This paper describes an application of a thyristor-controlled reactive power compensator (TCRC), which aims at individually controlling phase-to-phase voltage imbalancing in radial distribution feeders. The compensator model is straightforward included into the classical three-phase load flow formulation. The Newton-Raphson iterative solution is obtained through an algorithm based on the orthogonal Givens rotation. The solution method allows to overcome the usual ill-conditioned Jacobian matrix problem arised from radial networks with high R/X ratios. Large amount of simulations are carried out in order to evaluate the TCRC model robustness.
doi_str_mv 10.1109/TPWRD.2003.823192
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883822891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1278443</ieee_id><sourcerecordid>2426840651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-191f945b2584b1e5521ba8dcd88d44e715368f8613cc6bdfee0336fe1a29961f3</originalsourceid><addsrcrecordid>eNp9kUtLw0AUhQdRsFZ_gLgJLnSVOncmjztLqU8oKNLicpgkN5qSZuJMIvjvTRtBcOHq3sV3Dhw-xk6BzwC4ulo-v77czATncoZCghJ7bAJKpmEkOO6zCUeMQ1RpesiOvF9zziOu-IStVk1matPkVATtu_EUdjbcPcGnrTvzRkFuNy013nTW-cC0bV0NbGcDZ4rK1EFR-c5VWd9VtglKooKcP2YHpak9nfzcKVvd3S7nD-Hi6f5xfr0IcxnLLgQFpYriTMQYZUBxLCAzWOQFYhFFlEIsEywxAZnnSVYM5VzKpCQwQqkESjlll2Nv6-xHT77Tm8rnVA-DyPZeo0qETNJYDeTFv6RAqYBjOoDnf8C17V0zrNCIEoVABQMEI5Q7672jUreu2hj3pYHrrQ-986G3PvToY8icjZmKiH55kWIUSfkNuNiHHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883822891</pqid></control><display><type>article</type><title>Unbalanced phase-to-phase voltage compensators applied to radial distribution feeders</title><source>IEEE Electronic Library (IEL)</source><creator>Pires, R.C.</creator><creatorcontrib>Pires, R.C.</creatorcontrib><description>This paper describes an application of a thyristor-controlled reactive power compensator (TCRC), which aims at individually controlling phase-to-phase voltage imbalancing in radial distribution feeders. The compensator model is straightforward included into the classical three-phase load flow formulation. The Newton-Raphson iterative solution is obtained through an algorithm based on the orthogonal Givens rotation. The solution method allows to overcome the usual ill-conditioned Jacobian matrix problem arised from radial networks with high R/X ratios. Large amount of simulations are carried out in order to evaluate the TCRC model robustness.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2003.823192</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensators ; Current transformers ; Electric potential ; Feeders ; Frequency ; Iterative algorithms ; Jacobian matrix ; Load flow ; Mathematical models ; Object oriented modeling ; Power industry ; Power system modeling ; Power system reliability ; Radial distribution ; Reactive power control ; Robustness ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on power delivery, 2004-04, Vol.19 (2), p.806-812</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-191f945b2584b1e5521ba8dcd88d44e715368f8613cc6bdfee0336fe1a29961f3</citedby><cites>FETCH-LOGICAL-c353t-191f945b2584b1e5521ba8dcd88d44e715368f8613cc6bdfee0336fe1a29961f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1278443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1278443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pires, R.C.</creatorcontrib><title>Unbalanced phase-to-phase voltage compensators applied to radial distribution feeders</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This paper describes an application of a thyristor-controlled reactive power compensator (TCRC), which aims at individually controlling phase-to-phase voltage imbalancing in radial distribution feeders. The compensator model is straightforward included into the classical three-phase load flow formulation. The Newton-Raphson iterative solution is obtained through an algorithm based on the orthogonal Givens rotation. The solution method allows to overcome the usual ill-conditioned Jacobian matrix problem arised from radial networks with high R/X ratios. Large amount of simulations are carried out in order to evaluate the TCRC model robustness.</description><subject>Compensators</subject><subject>Current transformers</subject><subject>Electric potential</subject><subject>Feeders</subject><subject>Frequency</subject><subject>Iterative algorithms</subject><subject>Jacobian matrix</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>Object oriented modeling</subject><subject>Power industry</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Radial distribution</subject><subject>Reactive power control</subject><subject>Robustness</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLw0AUhQdRsFZ_gLgJLnSVOncmjztLqU8oKNLicpgkN5qSZuJMIvjvTRtBcOHq3sV3Dhw-xk6BzwC4ulo-v77czATncoZCghJ7bAJKpmEkOO6zCUeMQ1RpesiOvF9zziOu-IStVk1matPkVATtu_EUdjbcPcGnrTvzRkFuNy013nTW-cC0bV0NbGcDZ4rK1EFR-c5VWd9VtglKooKcP2YHpak9nfzcKVvd3S7nD-Hi6f5xfr0IcxnLLgQFpYriTMQYZUBxLCAzWOQFYhFFlEIsEywxAZnnSVYM5VzKpCQwQqkESjlll2Nv6-xHT77Tm8rnVA-DyPZeo0qETNJYDeTFv6RAqYBjOoDnf8C17V0zrNCIEoVABQMEI5Q7672jUreu2hj3pYHrrQ-986G3PvToY8icjZmKiH55kWIUSfkNuNiHHg</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Pires, R.C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040401</creationdate><title>Unbalanced phase-to-phase voltage compensators applied to radial distribution feeders</title><author>Pires, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-191f945b2584b1e5521ba8dcd88d44e715368f8613cc6bdfee0336fe1a29961f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Compensators</topic><topic>Current transformers</topic><topic>Electric potential</topic><topic>Feeders</topic><topic>Frequency</topic><topic>Iterative algorithms</topic><topic>Jacobian matrix</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>Object oriented modeling</topic><topic>Power industry</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Radial distribution</topic><topic>Reactive power control</topic><topic>Robustness</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pires, R.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pires, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbalanced phase-to-phase voltage compensators applied to radial distribution feeders</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2004-04-01</date><risdate>2004</risdate><volume>19</volume><issue>2</issue><spage>806</spage><epage>812</epage><pages>806-812</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This paper describes an application of a thyristor-controlled reactive power compensator (TCRC), which aims at individually controlling phase-to-phase voltage imbalancing in radial distribution feeders. The compensator model is straightforward included into the classical three-phase load flow formulation. The Newton-Raphson iterative solution is obtained through an algorithm based on the orthogonal Givens rotation. The solution method allows to overcome the usual ill-conditioned Jacobian matrix problem arised from radial networks with high R/X ratios. Large amount of simulations are carried out in order to evaluate the TCRC model robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2003.823192</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2004-04, Vol.19 (2), p.806-812
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_883822891
source IEEE Electronic Library (IEL)
subjects Compensators
Current transformers
Electric potential
Feeders
Frequency
Iterative algorithms
Jacobian matrix
Load flow
Mathematical models
Object oriented modeling
Power industry
Power system modeling
Power system reliability
Radial distribution
Reactive power control
Robustness
Voltage
Voltage control
title Unbalanced phase-to-phase voltage compensators applied to radial distribution feeders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbalanced%20phase-to-phase%20voltage%20compensators%20applied%20to%20radial%20distribution%20feeders&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Pires,%20R.C.&rft.date=2004-04-01&rft.volume=19&rft.issue=2&rft.spage=806&rft.epage=812&rft.pages=806-812&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2003.823192&rft_dat=%3Cproquest_RIE%3E2426840651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883822891&rft_id=info:pmid/&rft_ieee_id=1278443&rfr_iscdi=true