Channel estimation using implicit training

In this paper, a new method to perform channel estimation is presented. It is shown that accurate estimation can be obtained when a training sequence is actually arithmetically added to the information data as opposed to being placed in a separate empty time slot: hence, the word "implicit.&quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2004-01, Vol.52 (1), p.240-254
Hauptverfasser: Orozco-Lugo, A.G., Lara, M.M., McLernon, D.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1
container_start_page 240
container_title IEEE transactions on signal processing
container_volume 52
creator Orozco-Lugo, A.G.
Lara, M.M.
McLernon, D.C.
description In this paper, a new method to perform channel estimation is presented. It is shown that accurate estimation can be obtained when a training sequence is actually arithmetically added to the information data as opposed to being placed in a separate empty time slot: hence, the word "implicit." A closed-form solution for the estimation variance is derived, as well as the Cramer-Rao lower bound. Conditions are derived for the training sequences that result in a channel estimation performance that is independent of the channel characteristics. In addition, estimation performance is shown to be independent of the modulation format. A procedure to synthesize optimal training sequences is presented, and the problem of synchronization is solved. The performance of the algorithm is then compared with other methods that use explicit training under GSM-like environmental conditions, and the new algorithm is shown to be competitive with these. Finally, comparisons are also carried out against blind methods over realistic bandlimited channels, and these show that the new method exhibits good performance.
doi_str_mv 10.1109/TSP.2003.819993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883610994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1254040</ieee_id><sourcerecordid>1671407143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c6645741eadff3da83cea9e404f957e37870fb09f4e38b1a754a67b6ba1468033</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFbPHrwsgiLCtpNNNh9HKX5BQcEK3kI2TTRlm63J7sF_b8oWCh48hAmZZ14mT5adI5ggBGK6eHudlAB4wpEQAh9kIyQIKoAwepjuUOGi4uzjODuJcQWACBF0lN3OvpT3pslN7Nxada71eR-d_8zdetM47bq8C8r59HKaHVnVRHO2q-Ps_eF-MXsq5i-Pz7O7eaExh67QlJKKEWTU0lq8VBxro4QhQKyomMGMM7A1CEsM5jVSrCKKsprWChHKAeNxdj3kbkL73ae95NpFbZpGedP2UZa8BI4IJPDmXxBRlrB0tpmXf9BV2wefviE5xzT5EyRB0wHSoY0xGCs3ITkJPxKB3DqWybHcOpaD4zRxtYtVUavGBuW1i_uxCgvGKU3cxcA5Y8y-XVbJCuBfeGaCrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883610994</pqid></control><display><type>article</type><title>Channel estimation using implicit training</title><source>IEEE Electronic Library (IEL)</source><creator>Orozco-Lugo, A.G. ; Lara, M.M. ; McLernon, D.C.</creator><creatorcontrib>Orozco-Lugo, A.G. ; Lara, M.M. ; McLernon, D.C.</creatorcontrib><description>In this paper, a new method to perform channel estimation is presented. It is shown that accurate estimation can be obtained when a training sequence is actually arithmetically added to the information data as opposed to being placed in a separate empty time slot: hence, the word "implicit." A closed-form solution for the estimation variance is derived, as well as the Cramer-Rao lower bound. Conditions are derived for the training sequences that result in a channel estimation performance that is independent of the channel characteristics. In addition, estimation performance is shown to be independent of the modulation format. A procedure to synthesize optimal training sequences is presented, and the problem of synchronization is solved. The performance of the algorithm is then compared with other methods that use explicit training under GSM-like environmental conditions, and the new algorithm is shown to be competitive with these. Finally, comparisons are also carried out against blind methods over realistic bandlimited channels, and these show that the new method exhibits good performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2003.819993</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bandwidth ; Channel estimation ; Channels ; Cities and towns ; Closed-form solution ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Exact solutions ; Higher order statistics ; Information systems ; Information, signal and communications theory ; Mathematical analysis ; Modulation ; Optimization ; Receiving antennas ; Signal and communications theory ; Signal, noise ; Studies ; Synchronization ; Telecommunications and information theory ; Training ; Transmitters ; Transmitting antennas</subject><ispartof>IEEE transactions on signal processing, 2004-01, Vol.52 (1), p.240-254</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c6645741eadff3da83cea9e404f957e37870fb09f4e38b1a754a67b6ba1468033</citedby><cites>FETCH-LOGICAL-c380t-c6645741eadff3da83cea9e404f957e37870fb09f4e38b1a754a67b6ba1468033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1254040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1254040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15397866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Orozco-Lugo, A.G.</creatorcontrib><creatorcontrib>Lara, M.M.</creatorcontrib><creatorcontrib>McLernon, D.C.</creatorcontrib><title>Channel estimation using implicit training</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, a new method to perform channel estimation is presented. It is shown that accurate estimation can be obtained when a training sequence is actually arithmetically added to the information data as opposed to being placed in a separate empty time slot: hence, the word "implicit." A closed-form solution for the estimation variance is derived, as well as the Cramer-Rao lower bound. Conditions are derived for the training sequences that result in a channel estimation performance that is independent of the channel characteristics. In addition, estimation performance is shown to be independent of the modulation format. A procedure to synthesize optimal training sequences is presented, and the problem of synchronization is solved. The performance of the algorithm is then compared with other methods that use explicit training under GSM-like environmental conditions, and the new algorithm is shown to be competitive with these. Finally, comparisons are also carried out against blind methods over realistic bandlimited channels, and these show that the new method exhibits good performance.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Cities and towns</subject><subject>Closed-form solution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Higher order statistics</subject><subject>Information systems</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>Optimization</subject><subject>Receiving antennas</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Synchronization</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Transmitters</subject><subject>Transmitting antennas</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhhdRsFbPHrwsgiLCtpNNNh9HKX5BQcEK3kI2TTRlm63J7sF_b8oWCh48hAmZZ14mT5adI5ggBGK6eHudlAB4wpEQAh9kIyQIKoAwepjuUOGi4uzjODuJcQWACBF0lN3OvpT3pslN7Nxada71eR-d_8zdetM47bq8C8r59HKaHVnVRHO2q-Ps_eF-MXsq5i-Pz7O7eaExh67QlJKKEWTU0lq8VBxro4QhQKyomMGMM7A1CEsM5jVSrCKKsprWChHKAeNxdj3kbkL73ae95NpFbZpGedP2UZa8BI4IJPDmXxBRlrB0tpmXf9BV2wefviE5xzT5EyRB0wHSoY0xGCs3ITkJPxKB3DqWybHcOpaD4zRxtYtVUavGBuW1i_uxCgvGKU3cxcA5Y8y-XVbJCuBfeGaCrA</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Orozco-Lugo, A.G.</creator><creator>Lara, M.M.</creator><creator>McLernon, D.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200401</creationdate><title>Channel estimation using implicit training</title><author>Orozco-Lugo, A.G. ; Lara, M.M. ; McLernon, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c6645741eadff3da83cea9e404f957e37870fb09f4e38b1a754a67b6ba1468033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Cities and towns</topic><topic>Closed-form solution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Higher order statistics</topic><topic>Information systems</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>Optimization</topic><topic>Receiving antennas</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Synchronization</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Transmitters</topic><topic>Transmitting antennas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orozco-Lugo, A.G.</creatorcontrib><creatorcontrib>Lara, M.M.</creatorcontrib><creatorcontrib>McLernon, D.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orozco-Lugo, A.G.</au><au>Lara, M.M.</au><au>McLernon, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel estimation using implicit training</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-01</date><risdate>2004</risdate><volume>52</volume><issue>1</issue><spage>240</spage><epage>254</epage><pages>240-254</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, a new method to perform channel estimation is presented. It is shown that accurate estimation can be obtained when a training sequence is actually arithmetically added to the information data as opposed to being placed in a separate empty time slot: hence, the word "implicit." A closed-form solution for the estimation variance is derived, as well as the Cramer-Rao lower bound. Conditions are derived for the training sequences that result in a channel estimation performance that is independent of the channel characteristics. In addition, estimation performance is shown to be independent of the modulation format. A procedure to synthesize optimal training sequences is presented, and the problem of synchronization is solved. The performance of the algorithm is then compared with other methods that use explicit training under GSM-like environmental conditions, and the new algorithm is shown to be competitive with these. Finally, comparisons are also carried out against blind methods over realistic bandlimited channels, and these show that the new method exhibits good performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2003.819993</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2004-01, Vol.52 (1), p.240-254
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_883610994
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Bandwidth
Channel estimation
Channels
Cities and towns
Closed-form solution
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Exact solutions
Higher order statistics
Information systems
Information, signal and communications theory
Mathematical analysis
Modulation
Optimization
Receiving antennas
Signal and communications theory
Signal, noise
Studies
Synchronization
Telecommunications and information theory
Training
Transmitters
Transmitting antennas
title Channel estimation using implicit training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20estimation%20using%20implicit%20training&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Orozco-Lugo,%20A.G.&rft.date=2004-01&rft.volume=52&rft.issue=1&rft.spage=240&rft.epage=254&rft.pages=240-254&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2003.819993&rft_dat=%3Cproquest_RIE%3E1671407143%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883610994&rft_id=info:pmid/&rft_ieee_id=1254040&rfr_iscdi=true