Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83
The effect of severe plastic deformation carried out at room temperature by the methods of equal-channel angular (ECA) pressing and surface friction treatment (SFT) on the microstructure, rate of wear, and friction coefficient of a babbit B83 (11.5% Sb, 5.5% Cu, Sn for balance) has been investigated...
Gespeichert in:
Veröffentlicht in: | Physics of metals and metallography 2009-11, Vol.108 (5), p.519-526 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 5 |
container_start_page | 519 |
container_title | Physics of metals and metallography |
container_volume | 108 |
creator | Korshunov, L. G. Noskova, N. I. Korznikov, A. V. Chernenko, N. L. Vil’danova, N. F. |
description | The effect of severe plastic deformation carried out at room temperature by the methods of equal-channel angular (ECA) pressing and surface friction treatment (SFT) on the microstructure, rate of wear, and friction coefficient of a babbit B83 (11.5% Sb, 5.5% Cu, Sn for balance) has been investigated. It has been shown that severe plastic deformation that leads to a drop in the grain size of the babbit to 100–300 nm and to a strong refinement of particles of intermetallic phases (SnSb, Cu
3
Sn) causes a considerable (twofold-fourfold) reduction in the rate of wear and a decrease in the friction coefficient of a steel-babbit pair under test conditions with lubrication at small (0.07 m/s) and enhanced (4.5 m/s) sliding velocities. As was shown by structural investigations performed with the use of scanning electron microscopy, this positive influence of severe plastic deformation on the tribological properties of the babbit is connected with the formation on the deformed-babbit surface of a developed porosity, which improves conditions for lubrication of the babbit-steel friction pair due to the action of the self-lubrication effect and thereby favors the retention of a stable regime of boundary friction of this pair. The formation of porosity is a result of the accelerated spalling of hard brittle intermetallic particles of SnSb and Cu
3
Sn from the friction surface of the deformed babbit, which is caused by weakening and loss of the bonding of these particles with the plastic matrix (α solid solution based on tin) in the course of severe plastic deformation of the babbit. At the same time, under the conditions of dry sliding friction of the babbit-steel 45 pair, when a fatigue mechanism of wear of the alloy under consideration predominantly develops, this plastic deformation yields an approximately 1.6-fold increase in the rate of wear of the babbit. This increase is mainly due to numerous defects (microcracks) that are introduced into the babbit structure upon its severe plastic deformation and reduce the resistance of the surface layer of this material to the fatigue mechanism of wear. |
doi_str_mv | 10.1134/S0031918X0911012X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_883539529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426204401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-b8a625830ca3352a75a69deed7e6ae82f4c1e46f43c53606a2994b956393fc4d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_BezVpPjY56rJ-wIIHFfZW0nSyZuk2NUkF_70tK3gQYWAO87zvzLwIXVJyTSnjNy-EMKqp2hBNKaHl5gjNqBCikFSTYzSbxsU0P0VnKe0I4ZxLNkNu5RzYjIPDCT4hAu5bk7K3uAEX4t5kHzo8Vn4HvPc2hpTjYPMwkqZrcI6-Dm3Yemta3MfQQ8we0uRncG3q2md8p9g5OnGmTXDx0-fo7X71unws1s8PT8vbdWGZormolZGlUIxYw5gozUIYqRuAZgHSgCodtxS4dJxZwSSRptSa11pIppmzvGFzdHXwHU_5GCDlaheG2I0rK6WYYFqUeoToAZq-SRFc1Ue_N_GroqSa0qz-pDlqyoMmjWy3hfhr_L_oG4rRd5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883539529</pqid></control><display><type>article</type><title>Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83</title><source>SpringerLink Journals</source><creator>Korshunov, L. G. ; Noskova, N. I. ; Korznikov, A. V. ; Chernenko, N. L. ; Vil’danova, N. F.</creator><creatorcontrib>Korshunov, L. G. ; Noskova, N. I. ; Korznikov, A. V. ; Chernenko, N. L. ; Vil’danova, N. F.</creatorcontrib><description>The effect of severe plastic deformation carried out at room temperature by the methods of equal-channel angular (ECA) pressing and surface friction treatment (SFT) on the microstructure, rate of wear, and friction coefficient of a babbit B83 (11.5% Sb, 5.5% Cu, Sn for balance) has been investigated. It has been shown that severe plastic deformation that leads to a drop in the grain size of the babbit to 100–300 nm and to a strong refinement of particles of intermetallic phases (SnSb, Cu
3
Sn) causes a considerable (twofold-fourfold) reduction in the rate of wear and a decrease in the friction coefficient of a steel-babbit pair under test conditions with lubrication at small (0.07 m/s) and enhanced (4.5 m/s) sliding velocities. As was shown by structural investigations performed with the use of scanning electron microscopy, this positive influence of severe plastic deformation on the tribological properties of the babbit is connected with the formation on the deformed-babbit surface of a developed porosity, which improves conditions for lubrication of the babbit-steel friction pair due to the action of the self-lubrication effect and thereby favors the retention of a stable regime of boundary friction of this pair. The formation of porosity is a result of the accelerated spalling of hard brittle intermetallic particles of SnSb and Cu
3
Sn from the friction surface of the deformed babbit, which is caused by weakening and loss of the bonding of these particles with the plastic matrix (α solid solution based on tin) in the course of severe plastic deformation of the babbit. At the same time, under the conditions of dry sliding friction of the babbit-steel 45 pair, when a fatigue mechanism of wear of the alloy under consideration predominantly develops, this plastic deformation yields an approximately 1.6-fold increase in the rate of wear of the babbit. This increase is mainly due to numerous defects (microcracks) that are introduced into the babbit structure upon its severe plastic deformation and reduce the resistance of the surface layer of this material to the fatigue mechanism of wear.</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X0911012X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Chemistry and Materials Science ; Materials Science ; Metal fatigue ; Metallic Materials ; Plastic deformation ; Sliding friction ; Solid solutions ; Strength and Plasticity</subject><ispartof>Physics of metals and metallography, 2009-11, Vol.108 (5), p.519-526</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-b8a625830ca3352a75a69deed7e6ae82f4c1e46f43c53606a2994b956393fc4d3</citedby><cites>FETCH-LOGICAL-c381t-b8a625830ca3352a75a69deed7e6ae82f4c1e46f43c53606a2994b956393fc4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X0911012X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X0911012X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Korshunov, L. G.</creatorcontrib><creatorcontrib>Noskova, N. I.</creatorcontrib><creatorcontrib>Korznikov, A. V.</creatorcontrib><creatorcontrib>Chernenko, N. L.</creatorcontrib><creatorcontrib>Vil’danova, N. F.</creatorcontrib><title>Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>The effect of severe plastic deformation carried out at room temperature by the methods of equal-channel angular (ECA) pressing and surface friction treatment (SFT) on the microstructure, rate of wear, and friction coefficient of a babbit B83 (11.5% Sb, 5.5% Cu, Sn for balance) has been investigated. It has been shown that severe plastic deformation that leads to a drop in the grain size of the babbit to 100–300 nm and to a strong refinement of particles of intermetallic phases (SnSb, Cu
3
Sn) causes a considerable (twofold-fourfold) reduction in the rate of wear and a decrease in the friction coefficient of a steel-babbit pair under test conditions with lubrication at small (0.07 m/s) and enhanced (4.5 m/s) sliding velocities. As was shown by structural investigations performed with the use of scanning electron microscopy, this positive influence of severe plastic deformation on the tribological properties of the babbit is connected with the formation on the deformed-babbit surface of a developed porosity, which improves conditions for lubrication of the babbit-steel friction pair due to the action of the self-lubrication effect and thereby favors the retention of a stable regime of boundary friction of this pair. The formation of porosity is a result of the accelerated spalling of hard brittle intermetallic particles of SnSb and Cu
3
Sn from the friction surface of the deformed babbit, which is caused by weakening and loss of the bonding of these particles with the plastic matrix (α solid solution based on tin) in the course of severe plastic deformation of the babbit. At the same time, under the conditions of dry sliding friction of the babbit-steel 45 pair, when a fatigue mechanism of wear of the alloy under consideration predominantly develops, this plastic deformation yields an approximately 1.6-fold increase in the rate of wear of the babbit. This increase is mainly due to numerous defects (microcracks) that are introduced into the babbit structure upon its severe plastic deformation and reduce the resistance of the surface layer of this material to the fatigue mechanism of wear.</description><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Metallic Materials</subject><subject>Plastic deformation</subject><subject>Sliding friction</subject><subject>Solid solutions</subject><subject>Strength and Plasticity</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_BezVpPjY56rJ-wIIHFfZW0nSyZuk2NUkF_70tK3gQYWAO87zvzLwIXVJyTSnjNy-EMKqp2hBNKaHl5gjNqBCikFSTYzSbxsU0P0VnKe0I4ZxLNkNu5RzYjIPDCT4hAu5bk7K3uAEX4t5kHzo8Vn4HvPc2hpTjYPMwkqZrcI6-Dm3Yemta3MfQQ8we0uRncG3q2md8p9g5OnGmTXDx0-fo7X71unws1s8PT8vbdWGZormolZGlUIxYw5gozUIYqRuAZgHSgCodtxS4dJxZwSSRptSa11pIppmzvGFzdHXwHU_5GCDlaheG2I0rK6WYYFqUeoToAZq-SRFc1Ue_N_GroqSa0qz-pDlqyoMmjWy3hfhr_L_oG4rRd5E</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Korshunov, L. G.</creator><creator>Noskova, N. I.</creator><creator>Korznikov, A. V.</creator><creator>Chernenko, N. L.</creator><creator>Vil’danova, N. F.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20091101</creationdate><title>Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83</title><author>Korshunov, L. G. ; Noskova, N. I. ; Korznikov, A. V. ; Chernenko, N. L. ; Vil’danova, N. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-b8a625830ca3352a75a69deed7e6ae82f4c1e46f43c53606a2994b956393fc4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Metallic Materials</topic><topic>Plastic deformation</topic><topic>Sliding friction</topic><topic>Solid solutions</topic><topic>Strength and Plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korshunov, L. G.</creatorcontrib><creatorcontrib>Noskova, N. I.</creatorcontrib><creatorcontrib>Korznikov, A. V.</creatorcontrib><creatorcontrib>Chernenko, N. L.</creatorcontrib><creatorcontrib>Vil’danova, N. F.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korshunov, L. G.</au><au>Noskova, N. I.</au><au>Korznikov, A. V.</au><au>Chernenko, N. L.</au><au>Vil’danova, N. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>108</volume><issue>5</issue><spage>519</spage><epage>526</epage><pages>519-526</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>The effect of severe plastic deformation carried out at room temperature by the methods of equal-channel angular (ECA) pressing and surface friction treatment (SFT) on the microstructure, rate of wear, and friction coefficient of a babbit B83 (11.5% Sb, 5.5% Cu, Sn for balance) has been investigated. It has been shown that severe plastic deformation that leads to a drop in the grain size of the babbit to 100–300 nm and to a strong refinement of particles of intermetallic phases (SnSb, Cu
3
Sn) causes a considerable (twofold-fourfold) reduction in the rate of wear and a decrease in the friction coefficient of a steel-babbit pair under test conditions with lubrication at small (0.07 m/s) and enhanced (4.5 m/s) sliding velocities. As was shown by structural investigations performed with the use of scanning electron microscopy, this positive influence of severe plastic deformation on the tribological properties of the babbit is connected with the formation on the deformed-babbit surface of a developed porosity, which improves conditions for lubrication of the babbit-steel friction pair due to the action of the self-lubrication effect and thereby favors the retention of a stable regime of boundary friction of this pair. The formation of porosity is a result of the accelerated spalling of hard brittle intermetallic particles of SnSb and Cu
3
Sn from the friction surface of the deformed babbit, which is caused by weakening and loss of the bonding of these particles with the plastic matrix (α solid solution based on tin) in the course of severe plastic deformation of the babbit. At the same time, under the conditions of dry sliding friction of the babbit-steel 45 pair, when a fatigue mechanism of wear of the alloy under consideration predominantly develops, this plastic deformation yields an approximately 1.6-fold increase in the rate of wear of the babbit. This increase is mainly due to numerous defects (microcracks) that are introduced into the babbit structure upon its severe plastic deformation and reduce the resistance of the surface layer of this material to the fatigue mechanism of wear.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0031918X0911012X</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-918X |
ispartof | Physics of metals and metallography, 2009-11, Vol.108 (5), p.519-526 |
issn | 0031-918X 1555-6190 |
language | eng |
recordid | cdi_proquest_journals_883539529 |
source | SpringerLink Journals |
subjects | Chemistry and Materials Science Materials Science Metal fatigue Metallic Materials Plastic deformation Sliding friction Solid solutions Strength and Plasticity |
title | Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20severe%20plastic%20deformation%20on%20the%20microstructure%20and%20tribological%20properties%20of%20a%20babbit%20B83&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Korshunov,%20L.%20G.&rft.date=2009-11-01&rft.volume=108&rft.issue=5&rft.spage=519&rft.epage=526&rft.pages=519-526&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X0911012X&rft_dat=%3Cproquest_cross%3E2426204401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883539529&rft_id=info:pmid/&rfr_iscdi=true |