Numerical solution of the optimal periodic control problem using differential flatness
Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is refor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2004-02, Vol.49 (2), p.271-275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | IEEE transactions on automatic control |
container_volume | 49 |
creator | Varigonda, S. Georgiou, T.T. Daoutidis, P. |
description | Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples. |
doi_str_mv | 10.1109/TAC.2003.822855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883456435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266786</ieee_id><sourcerecordid>28439484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVIII7Tcw-5LIU2p7X1vdqjMW1aMO3F9Cq08qiVWa8caffQf58xDhh6CDkJzTwz8868hHxkdMEYbZfb1XrBKRULw7lR6orMmFKm5oqLazKjlJm65UbfkrtS9vjVUrIZ-f1zOkCO3vVVSf00xjRUKVTjX6jScYwHjB8xn3bRVz4NY04YyKnr4VBNJQ5_ql0MATIMY0Q29G4coJR7chNcX-DD6zsn229ft-vv9ebX04_1alN7yehYtwKM04JJzmSjQYvGecUaGZqGd9B4QakxqgMTOAVppEDRetcwxrh0XSfm5PHcFiU9T1BGe4jFQ9-7AdJUbItrKsqYQvLLmyQ3LcKSvwOUoj1JmZNP_4H7NOUBt7XGCKm0FKexyzPkcyolQ7DHjEfN_yyj9mSbRdvsyTZ7tg0rPr-2dQVdCdkNPpZLmWrxVpoi93DmIgBc0lzrxmjxAmK9nrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883456435</pqid></control><display><type>article</type><title>Numerical solution of the optimal periodic control problem using differential flatness</title><source>IEEE Electronic Library (IEL)</source><creator>Varigonda, S. ; Georgiou, T.T. ; Daoutidis, P.</creator><creatorcontrib>Varigonda, S. ; Georgiou, T.T. ; Daoutidis, P.</creatorcontrib><description>Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2003.822855</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace control ; Applied sciences ; Chemicals ; Computational efficiency ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Differential equations ; Dynamical systems ; Economic forecasting ; Exact sciences and technology ; Flatness ; Frequency domain analysis ; Jacobian matrices ; Jacobian matrix ; Mathematical models ; Miscellaneous ; Optimal control ; Optimization ; Process control ; Steady-state ; Testing</subject><ispartof>IEEE transactions on automatic control, 2004-02, Vol.49 (2), p.271-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</citedby><cites>FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15921460$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Varigonda, S.</creatorcontrib><creatorcontrib>Georgiou, T.T.</creatorcontrib><creatorcontrib>Daoutidis, P.</creatorcontrib><title>Numerical solution of the optimal periodic control problem using differential flatness</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.</description><subject>Aerospace control</subject><subject>Applied sciences</subject><subject>Chemicals</subject><subject>Computational efficiency</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Economic forecasting</subject><subject>Exact sciences and technology</subject><subject>Flatness</subject><subject>Frequency domain analysis</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Process control</subject><subject>Steady-state</subject><subject>Testing</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1rGzEQhkVIII7Tcw-5LIU2p7X1vdqjMW1aMO3F9Cq08qiVWa8caffQf58xDhh6CDkJzTwz8868hHxkdMEYbZfb1XrBKRULw7lR6orMmFKm5oqLazKjlJm65UbfkrtS9vjVUrIZ-f1zOkCO3vVVSf00xjRUKVTjX6jScYwHjB8xn3bRVz4NY04YyKnr4VBNJQ5_ql0MATIMY0Q29G4coJR7chNcX-DD6zsn229ft-vv9ebX04_1alN7yehYtwKM04JJzmSjQYvGecUaGZqGd9B4QakxqgMTOAVppEDRetcwxrh0XSfm5PHcFiU9T1BGe4jFQ9-7AdJUbItrKsqYQvLLmyQ3LcKSvwOUoj1JmZNP_4H7NOUBt7XGCKm0FKexyzPkcyolQ7DHjEfN_yyj9mSbRdvsyTZ7tg0rPr-2dQVdCdkNPpZLmWrxVpoi93DmIgBc0lzrxmjxAmK9nrs</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Varigonda, S.</creator><creator>Georgiou, T.T.</creator><creator>Daoutidis, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20040201</creationdate><title>Numerical solution of the optimal periodic control problem using differential flatness</title><author>Varigonda, S. ; Georgiou, T.T. ; Daoutidis, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aerospace control</topic><topic>Applied sciences</topic><topic>Chemicals</topic><topic>Computational efficiency</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Economic forecasting</topic><topic>Exact sciences and technology</topic><topic>Flatness</topic><topic>Frequency domain analysis</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Process control</topic><topic>Steady-state</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varigonda, S.</creatorcontrib><creatorcontrib>Georgiou, T.T.</creatorcontrib><creatorcontrib>Daoutidis, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varigonda, S.</au><au>Georgiou, T.T.</au><au>Daoutidis, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the optimal periodic control problem using differential flatness</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>49</volume><issue>2</issue><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2003.822855</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2004-02, Vol.49 (2), p.271-275 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_883456435 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace control Applied sciences Chemicals Computational efficiency Computer science control theory systems Control systems Control theory. Systems Differential equations Dynamical systems Economic forecasting Exact sciences and technology Flatness Frequency domain analysis Jacobian matrices Jacobian matrix Mathematical models Miscellaneous Optimal control Optimization Process control Steady-state Testing |
title | Numerical solution of the optimal periodic control problem using differential flatness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20optimal%20periodic%20control%20problem%20using%20differential%20flatness&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Varigonda,%20S.&rft.date=2004-02-01&rft.volume=49&rft.issue=2&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2003.822855&rft_dat=%3Cproquest_RIE%3E28439484%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883456435&rft_id=info:pmid/&rft_ieee_id=1266786&rfr_iscdi=true |