Numerical solution of the optimal periodic control problem using differential flatness

Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is refor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2004-02, Vol.49 (2), p.271-275
Hauptverfasser: Varigonda, S., Georgiou, T.T., Daoutidis, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 2
container_start_page 271
container_title IEEE transactions on automatic control
container_volume 49
creator Varigonda, S.
Georgiou, T.T.
Daoutidis, P.
description Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.
doi_str_mv 10.1109/TAC.2003.822855
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883456435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266786</ieee_id><sourcerecordid>28439484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVIII7Tcw-5LIU2p7X1vdqjMW1aMO3F9Cq08qiVWa8caffQf58xDhh6CDkJzTwz8868hHxkdMEYbZfb1XrBKRULw7lR6orMmFKm5oqLazKjlJm65UbfkrtS9vjVUrIZ-f1zOkCO3vVVSf00xjRUKVTjX6jScYwHjB8xn3bRVz4NY04YyKnr4VBNJQ5_ql0MATIMY0Q29G4coJR7chNcX-DD6zsn229ft-vv9ebX04_1alN7yehYtwKM04JJzmSjQYvGecUaGZqGd9B4QakxqgMTOAVppEDRetcwxrh0XSfm5PHcFiU9T1BGe4jFQ9-7AdJUbItrKsqYQvLLmyQ3LcKSvwOUoj1JmZNP_4H7NOUBt7XGCKm0FKexyzPkcyolQ7DHjEfN_yyj9mSbRdvsyTZ7tg0rPr-2dQVdCdkNPpZLmWrxVpoi93DmIgBc0lzrxmjxAmK9nrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883456435</pqid></control><display><type>article</type><title>Numerical solution of the optimal periodic control problem using differential flatness</title><source>IEEE Electronic Library (IEL)</source><creator>Varigonda, S. ; Georgiou, T.T. ; Daoutidis, P.</creator><creatorcontrib>Varigonda, S. ; Georgiou, T.T. ; Daoutidis, P.</creatorcontrib><description>Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2003.822855</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace control ; Applied sciences ; Chemicals ; Computational efficiency ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Differential equations ; Dynamical systems ; Economic forecasting ; Exact sciences and technology ; Flatness ; Frequency domain analysis ; Jacobian matrices ; Jacobian matrix ; Mathematical models ; Miscellaneous ; Optimal control ; Optimization ; Process control ; Steady-state ; Testing</subject><ispartof>IEEE transactions on automatic control, 2004-02, Vol.49 (2), p.271-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</citedby><cites>FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15921460$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Varigonda, S.</creatorcontrib><creatorcontrib>Georgiou, T.T.</creatorcontrib><creatorcontrib>Daoutidis, P.</creatorcontrib><title>Numerical solution of the optimal periodic control problem using differential flatness</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.</description><subject>Aerospace control</subject><subject>Applied sciences</subject><subject>Chemicals</subject><subject>Computational efficiency</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Economic forecasting</subject><subject>Exact sciences and technology</subject><subject>Flatness</subject><subject>Frequency domain analysis</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Process control</subject><subject>Steady-state</subject><subject>Testing</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1rGzEQhkVIII7Tcw-5LIU2p7X1vdqjMW1aMO3F9Cq08qiVWa8caffQf58xDhh6CDkJzTwz8868hHxkdMEYbZfb1XrBKRULw7lR6orMmFKm5oqLazKjlJm65UbfkrtS9vjVUrIZ-f1zOkCO3vVVSf00xjRUKVTjX6jScYwHjB8xn3bRVz4NY04YyKnr4VBNJQ5_ql0MATIMY0Q29G4coJR7chNcX-DD6zsn229ft-vv9ebX04_1alN7yehYtwKM04JJzmSjQYvGecUaGZqGd9B4QakxqgMTOAVppEDRetcwxrh0XSfm5PHcFiU9T1BGe4jFQ9-7AdJUbItrKsqYQvLLmyQ3LcKSvwOUoj1JmZNP_4H7NOUBt7XGCKm0FKexyzPkcyolQ7DHjEfN_yyj9mSbRdvsyTZ7tg0rPr-2dQVdCdkNPpZLmWrxVpoi93DmIgBc0lzrxmjxAmK9nrs</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Varigonda, S.</creator><creator>Georgiou, T.T.</creator><creator>Daoutidis, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20040201</creationdate><title>Numerical solution of the optimal periodic control problem using differential flatness</title><author>Varigonda, S. ; Georgiou, T.T. ; Daoutidis, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-93e8a631421476e637ac5174f772be7c300885be8f20e48436446d711124abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aerospace control</topic><topic>Applied sciences</topic><topic>Chemicals</topic><topic>Computational efficiency</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Economic forecasting</topic><topic>Exact sciences and technology</topic><topic>Flatness</topic><topic>Frequency domain analysis</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Process control</topic><topic>Steady-state</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varigonda, S.</creatorcontrib><creatorcontrib>Georgiou, T.T.</creatorcontrib><creatorcontrib>Daoutidis, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varigonda, S.</au><au>Georgiou, T.T.</au><au>Daoutidis, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the optimal periodic control problem using differential flatness</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>49</volume><issue>2</issue><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Optimal periodic control (OPC) is of interest in many engineering applications. In practice, the numerical solution of the OPC problem has been found to be quite challenging. In this note, we present a method which uses differential flatness for the solution of OPC problems. The OPC problem is reformulated using the flatness of the underlying dynamical system to eliminate the differential equations and the periodicity constraints, resulting in simpler and generally more efficient computation. The effect of point-wise constraints and the analytical computation of the Jacobian matrix are also discussed. The approach is demonstrated using two examples.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2003.822855</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2004-02, Vol.49 (2), p.271-275
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_883456435
source IEEE Electronic Library (IEL)
subjects Aerospace control
Applied sciences
Chemicals
Computational efficiency
Computer science
control theory
systems
Control systems
Control theory. Systems
Differential equations
Dynamical systems
Economic forecasting
Exact sciences and technology
Flatness
Frequency domain analysis
Jacobian matrices
Jacobian matrix
Mathematical models
Miscellaneous
Optimal control
Optimization
Process control
Steady-state
Testing
title Numerical solution of the optimal periodic control problem using differential flatness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20optimal%20periodic%20control%20problem%20using%20differential%20flatness&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Varigonda,%20S.&rft.date=2004-02-01&rft.volume=49&rft.issue=2&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2003.822855&rft_dat=%3Cproquest_RIE%3E28439484%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883456435&rft_id=info:pmid/&rft_ieee_id=1266786&rfr_iscdi=true