On Hamiltonian cycles as optimal p-cycles

Using Hamiltonian p-cycles, it can be shown that p-cycle design is able to reach the logical redundancy bound of 1/(d~-1) where d~ is the average node degree. We formulate two conditions on which the design is able to reach this bound if and only if Hamiltonian p-cycles are used.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2005-04, Vol.9 (4), p.360-362
1. Verfasser: Schupke, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 4
container_start_page 360
container_title IEEE communications letters
container_volume 9
creator Schupke, D.A.
description Using Hamiltonian p-cycles, it can be shown that p-cycle design is able to reach the logical redundancy bound of 1/(d~-1) where d~ is the average node degree. We formulate two conditions on which the design is able to reach this bound if and only if Hamiltonian p-cycles are used.
doi_str_mv 10.1109/LCOMM.2005.1413634
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883442326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1413634</ieee_id><sourcerecordid>2425611011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-8592b03403f9ae34343c77e52f3e0a9eda1aef2125b053d332c420335a354c083</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoOH_8A_pSBAUfOu9ySZs-ylAnbOxFn0OWpdDRtTXpHvbfm9nCQAKX4-5zX-6-jN0hTBGheFnMVsvllAPIKQqkjMQZm6CUKuUxnMccVJHmeaEu2VUIWwBQXOKEPa-aZG52Vd23TWWaxB5s7UJiQtJ2fbUzddKlQ-2GXZSmDu52_K_Z9_vb12yeLlYfn7PXRWpJyj5VsuBrIAFUFsaRiM_muZO8JAemcBuDxpUcuVyDpA0Rt4IDkTQkhQVF1-xp0O18-7N3ode7KlhX16Zx7T5oroByQhHBh3_gtt37Ju6mlSIhOPEsQnyArG9D8K7UnY9n-YNG0Efr9J91-midHq2LQ4-jsgnW1KU3ja3CaTLLMkDEyN0PXOWcO7VHlV8Y_3QS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883442326</pqid></control><display><type>article</type><title>On Hamiltonian cycles as optimal p-cycles</title><source>IEEE Xplore</source><creator>Schupke, D.A.</creator><creatorcontrib>Schupke, D.A.</creatorcontrib><description>Using Hamiltonian p-cycles, it can be shown that p-cycle design is able to reach the logical redundancy bound of 1/(d~-1) where d~ is the average node degree. We formulate two conditions on which the design is able to reach this bound if and only if Hamiltonian p-cycles are used.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2005.1413634</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuits ; Communication networks ; Communications technology ; Costs ; Electronic mail ; Exact sciences and technology ; Mathematical model ; Network topology ; Optimization methods ; Protection switching ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Wavelength division multiplexing</subject><ispartof>IEEE communications letters, 2005-04, Vol.9 (4), p.360-362</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-8592b03403f9ae34343c77e52f3e0a9eda1aef2125b053d332c420335a354c083</citedby><cites>FETCH-LOGICAL-c355t-8592b03403f9ae34343c77e52f3e0a9eda1aef2125b053d332c420335a354c083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1413634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1413634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16660111$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schupke, D.A.</creatorcontrib><title>On Hamiltonian cycles as optimal p-cycles</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Using Hamiltonian p-cycles, it can be shown that p-cycle design is able to reach the logical redundancy bound of 1/(d~-1) where d~ is the average node degree. We formulate two conditions on which the design is able to reach this bound if and only if Hamiltonian p-cycles are used.</description><subject>Applied sciences</subject><subject>Circuits</subject><subject>Communication networks</subject><subject>Communications technology</subject><subject>Costs</subject><subject>Electronic mail</subject><subject>Exact sciences and technology</subject><subject>Mathematical model</subject><subject>Network topology</subject><subject>Optimization methods</subject><subject>Protection switching</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wavelength division multiplexing</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQx4MoOH_8A_pSBAUfOu9ySZs-ylAnbOxFn0OWpdDRtTXpHvbfm9nCQAKX4-5zX-6-jN0hTBGheFnMVsvllAPIKQqkjMQZm6CUKuUxnMccVJHmeaEu2VUIWwBQXOKEPa-aZG52Vd23TWWaxB5s7UJiQtJ2fbUzddKlQ-2GXZSmDu52_K_Z9_vb12yeLlYfn7PXRWpJyj5VsuBrIAFUFsaRiM_muZO8JAemcBuDxpUcuVyDpA0Rt4IDkTQkhQVF1-xp0O18-7N3ode7KlhX16Zx7T5oroByQhHBh3_gtt37Ju6mlSIhOPEsQnyArG9D8K7UnY9n-YNG0Efr9J91-midHq2LQ4-jsgnW1KU3ja3CaTLLMkDEyN0PXOWcO7VHlV8Y_3QS</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Schupke, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050401</creationdate><title>On Hamiltonian cycles as optimal p-cycles</title><author>Schupke, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-8592b03403f9ae34343c77e52f3e0a9eda1aef2125b053d332c420335a354c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Circuits</topic><topic>Communication networks</topic><topic>Communications technology</topic><topic>Costs</topic><topic>Electronic mail</topic><topic>Exact sciences and technology</topic><topic>Mathematical model</topic><topic>Network topology</topic><topic>Optimization methods</topic><topic>Protection switching</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schupke, D.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schupke, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Hamiltonian cycles as optimal p-cycles</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>9</volume><issue>4</issue><spage>360</spage><epage>362</epage><pages>360-362</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Using Hamiltonian p-cycles, it can be shown that p-cycle design is able to reach the logical redundancy bound of 1/(d~-1) where d~ is the average node degree. We formulate two conditions on which the design is able to reach this bound if and only if Hamiltonian p-cycles are used.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2005.1413634</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2005-04, Vol.9 (4), p.360-362
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_883442326
source IEEE Xplore
subjects Applied sciences
Circuits
Communication networks
Communications technology
Costs
Electronic mail
Exact sciences and technology
Mathematical model
Network topology
Optimization methods
Protection switching
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Wavelength division multiplexing
title On Hamiltonian cycles as optimal p-cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Hamiltonian%20cycles%20as%20optimal%20p-cycles&rft.jtitle=IEEE%20communications%20letters&rft.au=Schupke,%20D.A.&rft.date=2005-04-01&rft.volume=9&rft.issue=4&rft.spage=360&rft.epage=362&rft.pages=360-362&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2005.1413634&rft_dat=%3Cproquest_RIE%3E2425611011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883442326&rft_id=info:pmid/&rft_ieee_id=1413634&rfr_iscdi=true