Investigation of forced liquid flows in open capillary channels

We investigate a forced flow through an open capillary channel consisting of two parallel plates under microgravity condition. The aim of the experiments is to determine the maximal volume flux that can be withdrawn from the channel. The theoretical approach with a one-dimensional Bernoulli equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microgravity science and technology 2002-12, Vol.13 (4), p.53-59
Hauptverfasser: Rosendahl, U., Ohlhoff, A., Dreyer, M. E., Rath, H. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 4
container_start_page 53
container_title Microgravity science and technology
container_volume 13
creator Rosendahl, U.
Ohlhoff, A.
Dreyer, M. E.
Rath, H. J.
description We investigate a forced flow through an open capillary channel consisting of two parallel plates under microgravity condition. The aim of the experiments is to determine the maximal volume flux that can be withdrawn from the channel. The theoretical approach with a one-dimensional Bernoulli equation leads to a non-linear ordinary differential equation for the radius of curvature along the free surface of the channel. Both laminar and entrance pressure losses are taken into account as well as the flow conditions before the inlet of the channel. Several experiments with different channels and fluid properties were performed in the Bremen drop tower. The theory shows good agreement with the experimental data for a wide range of the non-dimensional parameters Ohnesorge number, gap ratio and channel length. The knowledge of the maximum volume flux is necessary to prevent gas ingestion at the channel outlet which is un-desired for applications in surface tension tanks.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02881681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_883433495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425579241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-cf527c6a2dbdd56da1bb31cf4a2291c54bdb86a3f0db15a2debe739f99f6e95e3</originalsourceid><addsrcrecordid>eNpFkEtLxDAAhIMoWFcv_oLgUajm3eQkuuzqwoIXPZc8NUttukmr-O-trOBpDvMxMwwAlxjdYISa24c1IlJiIfERqLBseI2YYsegQorKGmEkT8FZKTuEBMGMVOBu03_6MsY3PcbUwxRgSNl6B7u4n6KDoUtfBcbZGXwPrR5i1-n8De277nvflXNwEnRX_MWfLsDrevWyfKq3z4-b5f22toSLsbaBk8YKTZxxjgunsTEU28A0IQpbzowzUmgakDOYz5g3vqEqKBWEV9zTBbg65A457ad5cbtLU-7nylZKyihlis_Q9QGyOZWSfWiHHD_muS1G7e8_7f8_9AcZ-Fhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883433495</pqid></control><display><type>article</type><title>Investigation of forced liquid flows in open capillary channels</title><source>Springer Nature - Complete Springer Journals</source><creator>Rosendahl, U. ; Ohlhoff, A. ; Dreyer, M. E. ; Rath, H. J.</creator><creatorcontrib>Rosendahl, U. ; Ohlhoff, A. ; Dreyer, M. E. ; Rath, H. J.</creatorcontrib><description>We investigate a forced flow through an open capillary channel consisting of two parallel plates under microgravity condition. The aim of the experiments is to determine the maximal volume flux that can be withdrawn from the channel. The theoretical approach with a one-dimensional Bernoulli equation leads to a non-linear ordinary differential equation for the radius of curvature along the free surface of the channel. Both laminar and entrance pressure losses are taken into account as well as the flow conditions before the inlet of the channel. Several experiments with different channels and fluid properties were performed in the Bremen drop tower. The theory shows good agreement with the experimental data for a wide range of the non-dimensional parameters Ohnesorge number, gap ratio and channel length. The knowledge of the maximum volume flux is necessary to prevent gas ingestion at the channel outlet which is un-desired for applications in surface tension tanks.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0938-0108</identifier><identifier>EISSN: 1875-0494</identifier><identifier>DOI: 10.1007/BF02881681</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Free surfaces ; Ingestion ; Mathematical models ; Studies ; Surface tension</subject><ispartof>Microgravity science and technology, 2002-12, Vol.13 (4), p.53-59</ispartof><rights>Springer 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-cf527c6a2dbdd56da1bb31cf4a2291c54bdb86a3f0db15a2debe739f99f6e95e3</citedby><cites>FETCH-LOGICAL-c256t-cf527c6a2dbdd56da1bb31cf4a2291c54bdb86a3f0db15a2debe739f99f6e95e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Rosendahl, U.</creatorcontrib><creatorcontrib>Ohlhoff, A.</creatorcontrib><creatorcontrib>Dreyer, M. E.</creatorcontrib><creatorcontrib>Rath, H. J.</creatorcontrib><title>Investigation of forced liquid flows in open capillary channels</title><title>Microgravity science and technology</title><description>We investigate a forced flow through an open capillary channel consisting of two parallel plates under microgravity condition. The aim of the experiments is to determine the maximal volume flux that can be withdrawn from the channel. The theoretical approach with a one-dimensional Bernoulli equation leads to a non-linear ordinary differential equation for the radius of curvature along the free surface of the channel. Both laminar and entrance pressure losses are taken into account as well as the flow conditions before the inlet of the channel. Several experiments with different channels and fluid properties were performed in the Bremen drop tower. The theory shows good agreement with the experimental data for a wide range of the non-dimensional parameters Ohnesorge number, gap ratio and channel length. The knowledge of the maximum volume flux is necessary to prevent gas ingestion at the channel outlet which is un-desired for applications in surface tension tanks.[PUBLICATION ABSTRACT]</description><subject>Free surfaces</subject><subject>Ingestion</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Surface tension</subject><issn>0938-0108</issn><issn>1875-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkEtLxDAAhIMoWFcv_oLgUajm3eQkuuzqwoIXPZc8NUttukmr-O-trOBpDvMxMwwAlxjdYISa24c1IlJiIfERqLBseI2YYsegQorKGmEkT8FZKTuEBMGMVOBu03_6MsY3PcbUwxRgSNl6B7u4n6KDoUtfBcbZGXwPrR5i1-n8De277nvflXNwEnRX_MWfLsDrevWyfKq3z4-b5f22toSLsbaBk8YKTZxxjgunsTEU28A0IQpbzowzUmgakDOYz5g3vqEqKBWEV9zTBbg65A457ad5cbtLU-7nylZKyihlis_Q9QGyOZWSfWiHHD_muS1G7e8_7f8_9AcZ-Fhg</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Rosendahl, U.</creator><creator>Ohlhoff, A.</creator><creator>Dreyer, M. E.</creator><creator>Rath, H. J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7TG</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L7M</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20021201</creationdate><title>Investigation of forced liquid flows in open capillary channels</title><author>Rosendahl, U. ; Ohlhoff, A. ; Dreyer, M. E. ; Rath, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-cf527c6a2dbdd56da1bb31cf4a2291c54bdb86a3f0db15a2debe739f99f6e95e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Free surfaces</topic><topic>Ingestion</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosendahl, U.</creatorcontrib><creatorcontrib>Ohlhoff, A.</creatorcontrib><creatorcontrib>Dreyer, M. E.</creatorcontrib><creatorcontrib>Rath, H. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Microgravity science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosendahl, U.</au><au>Ohlhoff, A.</au><au>Dreyer, M. E.</au><au>Rath, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of forced liquid flows in open capillary channels</atitle><jtitle>Microgravity science and technology</jtitle><date>2002-12-01</date><risdate>2002</risdate><volume>13</volume><issue>4</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0938-0108</issn><eissn>1875-0494</eissn><abstract>We investigate a forced flow through an open capillary channel consisting of two parallel plates under microgravity condition. The aim of the experiments is to determine the maximal volume flux that can be withdrawn from the channel. The theoretical approach with a one-dimensional Bernoulli equation leads to a non-linear ordinary differential equation for the radius of curvature along the free surface of the channel. Both laminar and entrance pressure losses are taken into account as well as the flow conditions before the inlet of the channel. Several experiments with different channels and fluid properties were performed in the Bremen drop tower. The theory shows good agreement with the experimental data for a wide range of the non-dimensional parameters Ohnesorge number, gap ratio and channel length. The knowledge of the maximum volume flux is necessary to prevent gas ingestion at the channel outlet which is un-desired for applications in surface tension tanks.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02881681</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-0108
ispartof Microgravity science and technology, 2002-12, Vol.13 (4), p.53-59
issn 0938-0108
1875-0494
language eng
recordid cdi_proquest_journals_883433495
source Springer Nature - Complete Springer Journals
subjects Free surfaces
Ingestion
Mathematical models
Studies
Surface tension
title Investigation of forced liquid flows in open capillary channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20forced%20liquid%20flows%20in%20open%20capillary%20channels&rft.jtitle=Microgravity%20science%20and%20technology&rft.au=Rosendahl,%20U.&rft.date=2002-12-01&rft.volume=13&rft.issue=4&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0938-0108&rft.eissn=1875-0494&rft_id=info:doi/10.1007/BF02881681&rft_dat=%3Cproquest_cross%3E2425579241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883433495&rft_id=info:pmid/&rfr_iscdi=true