New horizon for CNN: with fuzzy paradigms for multimedia

The cellular neural network (CNN) is a powerful technique to mimic the local function of biological neural circuits for real-time image and video processing. Recently, it is widely accepted that using a set of CNNs in parallel can achieve higher-level information processing and reasoning functions e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE circuits and systems magazine (New York, N.Y. 2001) N.Y. 2001), 2005-01, Vol.5 (2), p.20-35
Hauptverfasser: Lin, Chin-Teng, Chang, Chun-Lung, Chung, Jen-Feng
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cellular neural network (CNN) is a powerful technique to mimic the local function of biological neural circuits for real-time image and video processing. Recently, it is widely accepted that using a set of CNNs in parallel can achieve higher-level information processing and reasoning functions either from application or biology points of views. The authors introduce a novel framework for constructing a multiple-CNN integrated neural system called recurrent fuzzy CNN (RFCNN). This system can automatically learn its proper network structure and parameters simultaneously. In the RFCNN, each learned fuzzy rule corresponds to a CNN. Hence, each CNN takes care of a fuzzily separated problem region, and the functions of all CNNs are integrated through the fuzzy inference mechanism. Some online clustering algorithms are introduced for the structure learning, and the ordered-derivative calculus is applied to derive the recurrent learning rules of CNN templates in the parameter-learning phase. RFCNN provides a solution to the current dilemma on the decision of templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. The capability of the RFCNN is demonstrated on the real-world vision-based defect inspection and image descreening problems proving that the RFCNN scheme is effective and promising.
ISSN:1531-636X
1558-0830
DOI:10.1109/MCAS.2005.1438737