Stability analysis of nonlinear power electronic systems utilizing periodicity and introducing auxiliary state vector
Variable-structure piecewise-linear nonlinear dynamic feedback systems emerge frequently in power electronics. This paper is concerned with the stability analysis of these systems. Although it applies the usual well-known and widely used approach, namely, the eigenvalues of the Jacobian matrix of th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2005-01, Vol.52 (1), p.168-178 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 168 |
container_title | IEEE transactions on circuits and systems. 1, Fundamental theory and applications |
container_volume | 52 |
creator | Dranga, O. Buti, B. Nagy, I. Funato, H. |
description | Variable-structure piecewise-linear nonlinear dynamic feedback systems emerge frequently in power electronics. This paper is concerned with the stability analysis of these systems. Although it applies the usual well-known and widely used approach, namely, the eigenvalues of the Jacobian matrix of the Poincare/spl acute/ map function belonging to a fixed point of the system to ascertain the stability, this paper offers two contributions for simplification as well that utilize the periodicity of the structure or configuration sequence and apply an alternative simpler and faster method for the determination of the Jacobian matrix. The new method works with differences of state variables rather than derivatives of the Poincare/spl acute/ map function (PMF) and offers geometric interpretations for each step. The determination of the derivates of PMF is not needed. A key element is the introduction of the so-called auxiliary state vector for preserving the switching instant belonging to the periodic steady-state unchanged even after the small deviations of the system orbit around the fixed point. In addition, the application of the method is illustrated on a resonant dc-dc buck converter. |
doi_str_mv | 10.1109/TCSI.2004.840102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883404949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1377552</ieee_id><sourcerecordid>28096747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-4681b26947cb90d76f632dc64ef15b8deaf93c79536108d7fdf3a9b50bcecff33</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1poNsk90IvIofevB192JaOZWk-INBDNmchy6Oi4LW2kpxk--sj40ChJw3oeV-YearqC4UtpaC-73cPd1sGILZSAAX2odrQppE1SGg_LrNQteRMfqo-p_QEwBRwuqnmh2x6P_p8ImYy4yn5RIIjU5hGP6GJ5BheMBIc0eYYJm9JOqWMh0TmXGJ__fSbHDH6MHi7lgzETwUdZrv8mfm1YCaeSMomI3kuPSFeVGfOjAkv39_z6vH65353W9__urnb_bivLWc016KVtGetEp3tFQxd61rOBtsKdLTp5YDGKW471fCWghw6NzhuVN9Ab9E6x_l59W3tPcbwZ8aU9cEni-NoJgxz0kyCajvRFfDqP_ApzLEcJGkpuQChhCoQrJCNIaWITh-jP5TdNAW9SNCLBL1I0KuEEvm6Rjwi_sN51zUN42-9Doa1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883404949</pqid></control><display><type>article</type><title>Stability analysis of nonlinear power electronic systems utilizing periodicity and introducing auxiliary state vector</title><source>IEEE Electronic Library (IEL)</source><creator>Dranga, O. ; Buti, B. ; Nagy, I. ; Funato, H.</creator><creatorcontrib>Dranga, O. ; Buti, B. ; Nagy, I. ; Funato, H.</creatorcontrib><description>Variable-structure piecewise-linear nonlinear dynamic feedback systems emerge frequently in power electronics. This paper is concerned with the stability analysis of these systems. Although it applies the usual well-known and widely used approach, namely, the eigenvalues of the Jacobian matrix of the Poincare/spl acute/ map function belonging to a fixed point of the system to ascertain the stability, this paper offers two contributions for simplification as well that utilize the periodicity of the structure or configuration sequence and apply an alternative simpler and faster method for the determination of the Jacobian matrix. The new method works with differences of state variables rather than derivatives of the Poincare/spl acute/ map function (PMF) and offers geometric interpretations for each step. The determination of the derivates of PMF is not needed. A key element is the introduction of the so-called auxiliary state vector for preserving the switching instant belonging to the periodic steady-state unchanged even after the small deviations of the system orbit around the fixed point. In addition, the application of the method is illustrated on a resonant dc-dc buck converter.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2004.840102</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>DC-DC power conversion ; Eigenvalues and eigenfunctions ; Feedback ; Jacobian matrices ; Nonlinear dynamical systems ; nonlinear systems ; Piecewise linear techniques ; Power electronics ; Power system stability ; Resonance ; stability ; Stability analysis ; Steady-state ; variable-structure systems</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2005-01, Vol.52 (1), p.168-178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-4681b26947cb90d76f632dc64ef15b8deaf93c79536108d7fdf3a9b50bcecff33</citedby><cites>FETCH-LOGICAL-c321t-4681b26947cb90d76f632dc64ef15b8deaf93c79536108d7fdf3a9b50bcecff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1377552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1377552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dranga, O.</creatorcontrib><creatorcontrib>Buti, B.</creatorcontrib><creatorcontrib>Nagy, I.</creatorcontrib><creatorcontrib>Funato, H.</creatorcontrib><title>Stability analysis of nonlinear power electronic systems utilizing periodicity and introducing auxiliary state vector</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>Variable-structure piecewise-linear nonlinear dynamic feedback systems emerge frequently in power electronics. This paper is concerned with the stability analysis of these systems. Although it applies the usual well-known and widely used approach, namely, the eigenvalues of the Jacobian matrix of the Poincare/spl acute/ map function belonging to a fixed point of the system to ascertain the stability, this paper offers two contributions for simplification as well that utilize the periodicity of the structure or configuration sequence and apply an alternative simpler and faster method for the determination of the Jacobian matrix. The new method works with differences of state variables rather than derivatives of the Poincare/spl acute/ map function (PMF) and offers geometric interpretations for each step. The determination of the derivates of PMF is not needed. A key element is the introduction of the so-called auxiliary state vector for preserving the switching instant belonging to the periodic steady-state unchanged even after the small deviations of the system orbit around the fixed point. In addition, the application of the method is illustrated on a resonant dc-dc buck converter.</description><subject>DC-DC power conversion</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Feedback</subject><subject>Jacobian matrices</subject><subject>Nonlinear dynamical systems</subject><subject>nonlinear systems</subject><subject>Piecewise linear techniques</subject><subject>Power electronics</subject><subject>Power system stability</subject><subject>Resonance</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Steady-state</subject><subject>variable-structure systems</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1r3DAQhk1poNsk90IvIofevB192JaOZWk-INBDNmchy6Oi4LW2kpxk--sj40ChJw3oeV-YearqC4UtpaC-73cPd1sGILZSAAX2odrQppE1SGg_LrNQteRMfqo-p_QEwBRwuqnmh2x6P_p8ImYy4yn5RIIjU5hGP6GJ5BheMBIc0eYYJm9JOqWMh0TmXGJ__fSbHDH6MHi7lgzETwUdZrv8mfm1YCaeSMomI3kuPSFeVGfOjAkv39_z6vH65353W9__urnb_bivLWc016KVtGetEp3tFQxd61rOBtsKdLTp5YDGKW471fCWghw6NzhuVN9Ab9E6x_l59W3tPcbwZ8aU9cEni-NoJgxz0kyCajvRFfDqP_ApzLEcJGkpuQChhCoQrJCNIaWITh-jP5TdNAW9SNCLBL1I0KuEEvm6Rjwi_sN51zUN42-9Doa1</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Dranga, O.</creator><creator>Buti, B.</creator><creator>Nagy, I.</creator><creator>Funato, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200501</creationdate><title>Stability analysis of nonlinear power electronic systems utilizing periodicity and introducing auxiliary state vector</title><author>Dranga, O. ; Buti, B. ; Nagy, I. ; Funato, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-4681b26947cb90d76f632dc64ef15b8deaf93c79536108d7fdf3a9b50bcecff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>DC-DC power conversion</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Feedback</topic><topic>Jacobian matrices</topic><topic>Nonlinear dynamical systems</topic><topic>nonlinear systems</topic><topic>Piecewise linear techniques</topic><topic>Power electronics</topic><topic>Power system stability</topic><topic>Resonance</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Steady-state</topic><topic>variable-structure systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dranga, O.</creatorcontrib><creatorcontrib>Buti, B.</creatorcontrib><creatorcontrib>Nagy, I.</creatorcontrib><creatorcontrib>Funato, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dranga, O.</au><au>Buti, B.</au><au>Nagy, I.</au><au>Funato, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of nonlinear power electronic systems utilizing periodicity and introducing auxiliary state vector</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2005-01</date><risdate>2005</risdate><volume>52</volume><issue>1</issue><spage>168</spage><epage>178</epage><pages>168-178</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Variable-structure piecewise-linear nonlinear dynamic feedback systems emerge frequently in power electronics. This paper is concerned with the stability analysis of these systems. Although it applies the usual well-known and widely used approach, namely, the eigenvalues of the Jacobian matrix of the Poincare/spl acute/ map function belonging to a fixed point of the system to ascertain the stability, this paper offers two contributions for simplification as well that utilize the periodicity of the structure or configuration sequence and apply an alternative simpler and faster method for the determination of the Jacobian matrix. The new method works with differences of state variables rather than derivatives of the Poincare/spl acute/ map function (PMF) and offers geometric interpretations for each step. The determination of the derivates of PMF is not needed. A key element is the introduction of the so-called auxiliary state vector for preserving the switching instant belonging to the periodic steady-state unchanged even after the small deviations of the system orbit around the fixed point. In addition, the application of the method is illustrated on a resonant dc-dc buck converter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2004.840102</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2005-01, Vol.52 (1), p.168-178 |
issn | 1549-8328 1057-7122 1558-0806 |
language | eng |
recordid | cdi_proquest_journals_883404949 |
source | IEEE Electronic Library (IEL) |
subjects | DC-DC power conversion Eigenvalues and eigenfunctions Feedback Jacobian matrices Nonlinear dynamical systems nonlinear systems Piecewise linear techniques Power electronics Power system stability Resonance stability Stability analysis Steady-state variable-structure systems |
title | Stability analysis of nonlinear power electronic systems utilizing periodicity and introducing auxiliary state vector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20nonlinear%20power%20electronic%20systems%20utilizing%20periodicity%20and%20introducing%20auxiliary%20state%20vector&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Dranga,%20O.&rft.date=2005-01&rft.volume=52&rft.issue=1&rft.spage=168&rft.epage=178&rft.pages=168-178&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2004.840102&rft_dat=%3Cproquest_RIE%3E28096747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883404949&rft_id=info:pmid/&rft_ieee_id=1377552&rfr_iscdi=true |