Robust AM-FM features for speech recognition

In this letter, a nonlinear AM-FM speech model is used to extract robust features for speech recognition. The proposed features measure the amount of amplitude and frequency modulation that exists in speech resonances and attempt to model aspects of the speech acoustic information that the commonly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2005-09, Vol.12 (9), p.621-624
Hauptverfasser: Dimitriadis, D., Maragos, P., Potamianos, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 9
container_start_page 621
container_title IEEE signal processing letters
container_volume 12
creator Dimitriadis, D.
Maragos, P.
Potamianos, A.
description In this letter, a nonlinear AM-FM speech model is used to extract robust features for speech recognition. The proposed features measure the amount of amplitude and frequency modulation that exists in speech resonances and attempt to model aspects of the speech acoustic information that the commonly used linear source-filter model fails to capture. The robustness and discriminability of the AM-FM features is investigated in combination with mel cepstrum coefficients (MFCCs). It is shown that these hybrid features perform well in the presence of noise, both in terms of phoneme-discrimination (J-measure) and in terms of speech recognition performance in several different tasks. Average relative error rate reduction up to 11% for clean and 46% for mismatched noisy conditions is achieved when AM-FM features are combined with MFCCs.
doi_str_mv 10.1109/LSP.2005.853050
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883386779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1495427</ieee_id><sourcerecordid>28073080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-79111291fdb4032e11198c06d26d92f4c6ea360b204e0681e0acfa909a8965db3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKdnD16KB092e0maNDmO4VTYUPxxDmn6qh1bU5P24H9vRwXB0_s--Hwfjw8hlxRmlIKer1-fZwxAzJTgIOCITKgQKmVc0uMhQw6p1qBOyVmMWwBQVIkJuX3xRR-7ZLFJV5ukQtv1AWNS-ZDEFtF9JgGd_2jqrvbNOTmp7C7ixe-ckvfV3dvyIV0_3T8uF-vU8Ux1aa4ppUzTqiwy4AyHTSsHsmSy1KzKnETLJRQMMgSpKIJ1ldWgrdJSlAWfkpvxbhv8V4-xM_s6OtztbIO-j4YpyDkoGMDrf-DW96EZfjNKca5knusBmo-QCz7GgJVpQ7234dtQMAd1ZlBnDurMqG5oXI2NGhH_6EyLjOX8B9JhZy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883386779</pqid></control><display><type>article</type><title>Robust AM-FM features for speech recognition</title><source>IEEE Xplore (Online service)</source><creator>Dimitriadis, D. ; Maragos, P. ; Potamianos, A.</creator><creatorcontrib>Dimitriadis, D. ; Maragos, P. ; Potamianos, A.</creatorcontrib><description>In this letter, a nonlinear AM-FM speech model is used to extract robust features for speech recognition. The proposed features measure the amount of amplitude and frequency modulation that exists in speech resonances and attempt to model aspects of the speech acoustic information that the commonly used linear source-filter model fails to capture. The robustness and discriminability of the AM-FM features is investigated in combination with mel cepstrum coefficients (MFCCs). It is shown that these hybrid features perform well in the presence of noise, both in terms of phoneme-discrimination (J-measure) and in terms of speech recognition performance in several different tasks. Average relative error rate reduction up to 11% for clean and 46% for mismatched noisy conditions is achieved when AM-FM features are combined with MFCCs.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2005.853050</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic measurements ; Acoustic noise ; AM-FM ; ASR ; Cepstrum ; Data mining ; Feature extraction ; features ; Frequency measurement ; Frequency modulation ; Noise robustness ; nonlinear ; Resonance ; speech ; Speech recognition</subject><ispartof>IEEE signal processing letters, 2005-09, Vol.12 (9), p.621-624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-79111291fdb4032e11198c06d26d92f4c6ea360b204e0681e0acfa909a8965db3</citedby><cites>FETCH-LOGICAL-c348t-79111291fdb4032e11198c06d26d92f4c6ea360b204e0681e0acfa909a8965db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1495427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1495427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dimitriadis, D.</creatorcontrib><creatorcontrib>Maragos, P.</creatorcontrib><creatorcontrib>Potamianos, A.</creatorcontrib><title>Robust AM-FM features for speech recognition</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, a nonlinear AM-FM speech model is used to extract robust features for speech recognition. The proposed features measure the amount of amplitude and frequency modulation that exists in speech resonances and attempt to model aspects of the speech acoustic information that the commonly used linear source-filter model fails to capture. The robustness and discriminability of the AM-FM features is investigated in combination with mel cepstrum coefficients (MFCCs). It is shown that these hybrid features perform well in the presence of noise, both in terms of phoneme-discrimination (J-measure) and in terms of speech recognition performance in several different tasks. Average relative error rate reduction up to 11% for clean and 46% for mismatched noisy conditions is achieved when AM-FM features are combined with MFCCs.</description><subject>Acoustic measurements</subject><subject>Acoustic noise</subject><subject>AM-FM</subject><subject>ASR</subject><subject>Cepstrum</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>features</subject><subject>Frequency measurement</subject><subject>Frequency modulation</subject><subject>Noise robustness</subject><subject>nonlinear</subject><subject>Resonance</subject><subject>speech</subject><subject>Speech recognition</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoOKdnD16KB092e0maNDmO4VTYUPxxDmn6qh1bU5P24H9vRwXB0_s--Hwfjw8hlxRmlIKer1-fZwxAzJTgIOCITKgQKmVc0uMhQw6p1qBOyVmMWwBQVIkJuX3xRR-7ZLFJV5ukQtv1AWNS-ZDEFtF9JgGd_2jqrvbNOTmp7C7ixe-ckvfV3dvyIV0_3T8uF-vU8Ux1aa4ppUzTqiwy4AyHTSsHsmSy1KzKnETLJRQMMgSpKIJ1ldWgrdJSlAWfkpvxbhv8V4-xM_s6OtztbIO-j4YpyDkoGMDrf-DW96EZfjNKca5knusBmo-QCz7GgJVpQ7234dtQMAd1ZlBnDurMqG5oXI2NGhH_6EyLjOX8B9JhZy0</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Dimitriadis, D.</creator><creator>Maragos, P.</creator><creator>Potamianos, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050901</creationdate><title>Robust AM-FM features for speech recognition</title><author>Dimitriadis, D. ; Maragos, P. ; Potamianos, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-79111291fdb4032e11198c06d26d92f4c6ea360b204e0681e0acfa909a8965db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic measurements</topic><topic>Acoustic noise</topic><topic>AM-FM</topic><topic>ASR</topic><topic>Cepstrum</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>features</topic><topic>Frequency measurement</topic><topic>Frequency modulation</topic><topic>Noise robustness</topic><topic>nonlinear</topic><topic>Resonance</topic><topic>speech</topic><topic>Speech recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitriadis, D.</creatorcontrib><creatorcontrib>Maragos, P.</creatorcontrib><creatorcontrib>Potamianos, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimitriadis, D.</au><au>Maragos, P.</au><au>Potamianos, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust AM-FM features for speech recognition</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>12</volume><issue>9</issue><spage>621</spage><epage>624</epage><pages>621-624</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, a nonlinear AM-FM speech model is used to extract robust features for speech recognition. The proposed features measure the amount of amplitude and frequency modulation that exists in speech resonances and attempt to model aspects of the speech acoustic information that the commonly used linear source-filter model fails to capture. The robustness and discriminability of the AM-FM features is investigated in combination with mel cepstrum coefficients (MFCCs). It is shown that these hybrid features perform well in the presence of noise, both in terms of phoneme-discrimination (J-measure) and in terms of speech recognition performance in several different tasks. Average relative error rate reduction up to 11% for clean and 46% for mismatched noisy conditions is achieved when AM-FM features are combined with MFCCs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2005.853050</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2005-09, Vol.12 (9), p.621-624
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_883386779
source IEEE Xplore (Online service)
subjects Acoustic measurements
Acoustic noise
AM-FM
ASR
Cepstrum
Data mining
Feature extraction
features
Frequency measurement
Frequency modulation
Noise robustness
nonlinear
Resonance
speech
Speech recognition
title Robust AM-FM features for speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20AM-FM%20features%20for%20speech%20recognition&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Dimitriadis,%20D.&rft.date=2005-09-01&rft.volume=12&rft.issue=9&rft.spage=621&rft.epage=624&rft.pages=621-624&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2005.853050&rft_dat=%3Cproquest_RIE%3E28073080%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883386779&rft_id=info:pmid/&rft_ieee_id=1495427&rfr_iscdi=true