A bounded-error approach to piecewise affine system identification

This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2005-10, Vol.50 (10), p.1567-1580
Hauptverfasser: Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1580
container_issue 10
container_start_page 1567
container_title IEEE transactions on automatic control
container_volume 50
creator Bemporad, A.
Garulli, A.
Paoletti, S.
Vicino, A.
description This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PFS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity /spl delta/. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.
doi_str_mv 10.1109/TAC.2005.856667
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_883382928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1516258</ieee_id><sourcerecordid>27998203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-93c9306bb30a56b2a94bd0e1d843dfcd462c2a4e7cfcaf0c3f843af4859746da3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtnD14WD962zfcmx1r8goKXeg7Z7ART2t012UX896asIHjxNAzzvMPMg9A1wQtCsF5uV-sFxVgslJBSVidoRoRQJRWUnaIZxkSVmip5ji5S2uVWck5m6H5V1N3YNtCUEGMXC9v3sbPuvRi6og_g4DMkKKz3oYUifaUBDkVooB2CD84OoWsv0Zm3-wRXP3WO3h4ftuvncvP69LJebUrHRTWUmjnNsKxrhq2QNbWa1w0G0ijOGu8aLqmjlkPlvLMeO-bzwHquhK64bCybo7tpbz7wY4Q0mENIDvZ720I3JkOVYkwq-T9Yaa0oZhm8_QPuujG2-Qlz3KVoFpah5QS52KUUwZs-hoONX4ZgczRvsnlzNG8m8zlxMyUCAPzSgkgqFPsGtzR-2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883382928</pqid></control><display><type>article</type><title>A bounded-error approach to piecewise affine system identification</title><source>IEEE Electronic Library (IEL)</source><creator>Bemporad, A. ; Garulli, A. ; Paoletti, S. ; Vicino, A.</creator><creatorcontrib>Bemporad, A. ; Garulli, A. ; Paoletti, S. ; Vicino, A.</creatorcontrib><description>This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PFS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity /spl delta/. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2005.856667</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bounded error ; Contracts ; Electronic components ; MIN PFS problem ; Neural networks ; Nonlinear dynamical systems ; nonlinear identification ; Parameter estimation ; Partitioning algorithms ; piecewise affine autoregressive exogenous models ; Region 3 ; State estimation ; Studies ; System identification ; Time series analysis</subject><ispartof>IEEE transactions on automatic control, 2005-10, Vol.50 (10), p.1567-1580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-93c9306bb30a56b2a94bd0e1d843dfcd462c2a4e7cfcaf0c3f843af4859746da3</citedby><cites>FETCH-LOGICAL-c457t-93c9306bb30a56b2a94bd0e1d843dfcd462c2a4e7cfcaf0c3f843af4859746da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1516258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1516258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bemporad, A.</creatorcontrib><creatorcontrib>Garulli, A.</creatorcontrib><creatorcontrib>Paoletti, S.</creatorcontrib><creatorcontrib>Vicino, A.</creatorcontrib><title>A bounded-error approach to piecewise affine system identification</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PFS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity /spl delta/. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.</description><subject>Bounded error</subject><subject>Contracts</subject><subject>Electronic components</subject><subject>MIN PFS problem</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>nonlinear identification</subject><subject>Parameter estimation</subject><subject>Partitioning algorithms</subject><subject>piecewise affine autoregressive exogenous models</subject><subject>Region 3</subject><subject>State estimation</subject><subject>Studies</subject><subject>System identification</subject><subject>Time series analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkE1LAzEQhoMoWKtnD14WD962zfcmx1r8goKXeg7Z7ART2t012UX896asIHjxNAzzvMPMg9A1wQtCsF5uV-sFxVgslJBSVidoRoRQJRWUnaIZxkSVmip5ji5S2uVWck5m6H5V1N3YNtCUEGMXC9v3sbPuvRi6og_g4DMkKKz3oYUifaUBDkVooB2CD84OoWsv0Zm3-wRXP3WO3h4ftuvncvP69LJebUrHRTWUmjnNsKxrhq2QNbWa1w0G0ijOGu8aLqmjlkPlvLMeO-bzwHquhK64bCybo7tpbz7wY4Q0mENIDvZ720I3JkOVYkwq-T9Yaa0oZhm8_QPuujG2-Qlz3KVoFpah5QS52KUUwZs-hoONX4ZgczRvsnlzNG8m8zlxMyUCAPzSgkgqFPsGtzR-2w</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Bemporad, A.</creator><creator>Garulli, A.</creator><creator>Paoletti, S.</creator><creator>Vicino, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>200510</creationdate><title>A bounded-error approach to piecewise affine system identification</title><author>Bemporad, A. ; Garulli, A. ; Paoletti, S. ; Vicino, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-93c9306bb30a56b2a94bd0e1d843dfcd462c2a4e7cfcaf0c3f843af4859746da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bounded error</topic><topic>Contracts</topic><topic>Electronic components</topic><topic>MIN PFS problem</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>nonlinear identification</topic><topic>Parameter estimation</topic><topic>Partitioning algorithms</topic><topic>piecewise affine autoregressive exogenous models</topic><topic>Region 3</topic><topic>State estimation</topic><topic>Studies</topic><topic>System identification</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bemporad, A.</creatorcontrib><creatorcontrib>Garulli, A.</creatorcontrib><creatorcontrib>Paoletti, S.</creatorcontrib><creatorcontrib>Vicino, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bemporad, A.</au><au>Garulli, A.</au><au>Paoletti, S.</au><au>Vicino, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bounded-error approach to piecewise affine system identification</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2005-10</date><risdate>2005</risdate><volume>50</volume><issue>10</issue><spage>1567</spage><epage>1580</epage><pages>1567-1580</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PFS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity /spl delta/. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2005.856667</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2005-10, Vol.50 (10), p.1567-1580
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_883382928
source IEEE Electronic Library (IEL)
subjects Bounded error
Contracts
Electronic components
MIN PFS problem
Neural networks
Nonlinear dynamical systems
nonlinear identification
Parameter estimation
Partitioning algorithms
piecewise affine autoregressive exogenous models
Region 3
State estimation
Studies
System identification
Time series analysis
title A bounded-error approach to piecewise affine system identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T19%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bounded-error%20approach%20to%20piecewise%20affine%20system%20identification&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bemporad,%20A.&rft.date=2005-10&rft.volume=50&rft.issue=10&rft.spage=1567&rft.epage=1580&rft.pages=1567-1580&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2005.856667&rft_dat=%3Cproquest_RIE%3E27998203%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883382928&rft_id=info:pmid/&rft_ieee_id=1516258&rfr_iscdi=true