Role of Bim in apoptosis induced in H460 lung tumor cells by the spindle poison Combretastatin-A4

The BH3-only Bcl-2 subfamily member Bim is a well known apoptosis promoting protein. However, the mechanisms upstream of mitochondrion membrane permeability by which Bim is involved in apoptosis have been poorly investigated, particularly in response to agents capable of interfering with the cytoske...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Apoptosis (London) 2011-09, Vol.16 (9), p.940-949
Hauptverfasser: Mendez, G., Policarpi, C., Cenciarelli, C., Tanzarella, C., Antoccia, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The BH3-only Bcl-2 subfamily member Bim is a well known apoptosis promoting protein. However, the mechanisms upstream of mitochondrion membrane permeability by which Bim is involved in apoptosis have been poorly investigated, particularly in response to agents capable of interfering with the cytoskeleton architecture and arresting cells in mitosis. Based on the observation that Bim is sequestered on the microtubule-array by interaction with the light chain of dynein, we have investigated upon depolymerisation, whether Bim could be involved in the commitment of apoptosis. With this purpose H460 Non Small Lung Cancer Cells (NSLC) were treated with the microtubule damaging agent combretastatin-A4 (CA-4) (7.5 nM; 8–48 h), and various parameters were investigated. Upon treatment, cells arrested in mitosis and died through a caspase-3-dependent mitotic catastrophe. Transient knock down of Bim drastically reduced apoptosis, indicating that this protein was involved in cell death as induced by microtubules disorganisation. In response to increasing conditions of microtubules depolymerisation, we found that the protein level of Bim was strongly upregulated in a time-dependent manner at transcriptional level. Furthermore, Bim was released from microtubule-associated components. Bim was translocated to mitochondria, even in a condition of protein synthesis inhibition, where it showed a markedly increased interaction with Bcl-2. In turn, the fraction of Bax bound to Bcl-2 decreases in response to treatment, thereby indicating that Bim possibly promotes Bax release from the pro-survival protein Bcl-2. Overall, we demonstrated that Bim is required for the CA-4-induced cell death in the H460 lung cancer cell line via activation of the mitochondrial signalling pathway. Defining the contribution of Bim to the mechanism of apoptosis may offer some different clues in view of developing new strategies for chemotherapy with CA-4, underlining the relevance of the cytoskeleton integrity in the apoptotic response.
ISSN:1360-8185
1573-675X
DOI:10.1007/s10495-011-0619-8