A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions
Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task for electric utilities, especially in cases where...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2006-02, Vol.45 (2), p.181-201 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | Journal of intelligent & robotic systems |
container_volume | 45 |
creator | Georgilakis, P. S. Katsigiannis, J. A. Valavanis, K. P. Souflaris, A. T. |
description | Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task for electric utilities, especially in cases where the continuity of supply is crucial. In this paper, Stochastic Petri Nets are used for the simulation of the fault diagnosis process of oil-immersed transformers and the definition of the actions followed to repair the transformer. Transformer fault detection is realized using an integrated safety detector, in case of sealed type transformer that is completely filled with oil, while a Buchholz relay and an oil thermometer are used, in case of transformer with conservator tank. Simulation results for the most common types of transformer faults (overloading, oil leakage, short-circuit and insulation failure) are presented. The proposed Stochastic Petri Net based methodology provides a systematical determination of the sequence of fault diagnosis and repair actions and aims at identifying the transformer fault and estimating the duration for transformer repair.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10846-006-9033-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881669112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420066831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-cf762e6c96965934f86f15e90c727432b90f88704491beb086c7bdc77f20e97b3</originalsourceid><addsrcrecordid>eNotkE1PAjEURRujiYj-AHeN-9HXzkzbt0QUNcGPCK6bTmlhCEyxLQv-vUNwdc_i5t7kEHLL4J4ByIfEQFWiABAFQlkWeEYGrJZlARXgORkAclYAR3FJrlJaAwCqGgfEj-jskLLbmtxaOsvBrkw64pfLsaUfLtNHk9yCvru8CouwCcsD9SHSeTRd6mHrIp2Y_SbTp9Ysu5DaRE23oN9uZ9pIRza3oUvX5MKbTXI3_zkkP5Pn-fi1mH6-vI1H08JyyXNhvRTcCYsCRY1l5ZXwrHYIVnJZlbxB8EpJqCpkjWtACSubhZXSc3Aom3JI7k67uxh-9y5lvQ772PWXWikmBDLG-xI7lWwMKUXn9S62WxMPmoE-2tQnm7q3qY82NZZ_K4pnmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881669112</pqid></control><display><type>article</type><title>A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Georgilakis, P. S. ; Katsigiannis, J. A. ; Valavanis, K. P. ; Souflaris, A. T.</creator><creatorcontrib>Georgilakis, P. S. ; Katsigiannis, J. A. ; Valavanis, K. P. ; Souflaris, A. T.</creatorcontrib><description>Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task for electric utilities, especially in cases where the continuity of supply is crucial. In this paper, Stochastic Petri Nets are used for the simulation of the fault diagnosis process of oil-immersed transformers and the definition of the actions followed to repair the transformer. Transformer fault detection is realized using an integrated safety detector, in case of sealed type transformer that is completely filled with oil, while a Buchholz relay and an oil thermometer are used, in case of transformer with conservator tank. Simulation results for the most common types of transformer faults (overloading, oil leakage, short-circuit and insulation failure) are presented. The proposed Stochastic Petri Net based methodology provides a systematical determination of the sequence of fault diagnosis and repair actions and aims at identifying the transformer fault and estimating the duration for transformer repair.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-006-9033-9</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Fault diagnosis ; Studies</subject><ispartof>Journal of intelligent & robotic systems, 2006-02, Vol.45 (2), p.181-201</ispartof><rights>Springer Science+Business Media B.V. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-cf762e6c96965934f86f15e90c727432b90f88704491beb086c7bdc77f20e97b3</citedby><cites>FETCH-LOGICAL-c272t-cf762e6c96965934f86f15e90c727432b90f88704491beb086c7bdc77f20e97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Georgilakis, P. S.</creatorcontrib><creatorcontrib>Katsigiannis, J. A.</creatorcontrib><creatorcontrib>Valavanis, K. P.</creatorcontrib><creatorcontrib>Souflaris, A. T.</creatorcontrib><title>A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions</title><title>Journal of intelligent & robotic systems</title><description>Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task for electric utilities, especially in cases where the continuity of supply is crucial. In this paper, Stochastic Petri Nets are used for the simulation of the fault diagnosis process of oil-immersed transformers and the definition of the actions followed to repair the transformer. Transformer fault detection is realized using an integrated safety detector, in case of sealed type transformer that is completely filled with oil, while a Buchholz relay and an oil thermometer are used, in case of transformer with conservator tank. Simulation results for the most common types of transformer faults (overloading, oil leakage, short-circuit and insulation failure) are presented. The proposed Stochastic Petri Net based methodology provides a systematical determination of the sequence of fault diagnosis and repair actions and aims at identifying the transformer fault and estimating the duration for transformer repair.[PUBLICATION ABSTRACT]</description><subject>Fault diagnosis</subject><subject>Studies</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE1PAjEURRujiYj-AHeN-9HXzkzbt0QUNcGPCK6bTmlhCEyxLQv-vUNwdc_i5t7kEHLL4J4ByIfEQFWiABAFQlkWeEYGrJZlARXgORkAclYAR3FJrlJaAwCqGgfEj-jskLLbmtxaOsvBrkw64pfLsaUfLtNHk9yCvru8CouwCcsD9SHSeTRd6mHrIp2Y_SbTp9Ysu5DaRE23oN9uZ9pIRza3oUvX5MKbTXI3_zkkP5Pn-fi1mH6-vI1H08JyyXNhvRTcCYsCRY1l5ZXwrHYIVnJZlbxB8EpJqCpkjWtACSubhZXSc3Aom3JI7k67uxh-9y5lvQ772PWXWikmBDLG-xI7lWwMKUXn9S62WxMPmoE-2tQnm7q3qY82NZZ_K4pnmw</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Georgilakis, P. S.</creator><creator>Katsigiannis, J. A.</creator><creator>Valavanis, K. P.</creator><creator>Souflaris, A. T.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200602</creationdate><title>A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions</title><author>Georgilakis, P. S. ; Katsigiannis, J. A. ; Valavanis, K. P. ; Souflaris, A. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-cf762e6c96965934f86f15e90c727432b90f88704491beb086c7bdc77f20e97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Fault diagnosis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgilakis, P. S.</creatorcontrib><creatorcontrib>Katsigiannis, J. A.</creatorcontrib><creatorcontrib>Valavanis, K. P.</creatorcontrib><creatorcontrib>Souflaris, A. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgilakis, P. S.</au><au>Katsigiannis, J. A.</au><au>Valavanis, K. P.</au><au>Souflaris, A. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><date>2006-02</date><risdate>2006</risdate><volume>45</volume><issue>2</issue><spage>181</spage><epage>201</epage><pages>181-201</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task for electric utilities, especially in cases where the continuity of supply is crucial. In this paper, Stochastic Petri Nets are used for the simulation of the fault diagnosis process of oil-immersed transformers and the definition of the actions followed to repair the transformer. Transformer fault detection is realized using an integrated safety detector, in case of sealed type transformer that is completely filled with oil, while a Buchholz relay and an oil thermometer are used, in case of transformer with conservator tank. Simulation results for the most common types of transformer faults (overloading, oil leakage, short-circuit and insulation failure) are presented. The proposed Stochastic Petri Net based methodology provides a systematical determination of the sequence of fault diagnosis and repair actions and aims at identifying the transformer fault and estimating the duration for transformer repair.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10846-006-9033-9</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2006-02, Vol.45 (2), p.181-201 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_881669112 |
source | SpringerLink Journals - AutoHoldings |
subjects | Fault diagnosis Studies |
title | A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Stochastic%20Petri%20Net%20Based%20Methodology%20for%20Transformer%20Fault%20Diagnosis%20and%20Repair%20Actions&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Georgilakis,%20P.%20S.&rft.date=2006-02&rft.volume=45&rft.issue=2&rft.spage=181&rft.epage=201&rft.pages=181-201&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-006-9033-9&rft_dat=%3Cproquest_cross%3E2420066831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881669112&rft_id=info:pmid/&rfr_iscdi=true |