Some groups of type VF

A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2003-01, Vol.151 (1), p.135-165
Hauptverfasser: Leary, Ian J., Nucinkis, Brita E.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 135
container_title Inventiones mathematicae
container_volume 151
creator Leary, Ian J.
Nucinkis, Brita E.A.
description A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00222-002-0254-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881401691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418800911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-54d8f401e18f70e2a32f51de4628f8644e48c96c580b2bb694cc3a689068e383</originalsourceid><addsrcrecordid>eNotj81LAzEUxIMouFavgrfFe_S9l2w-jlJsFQoeLF7DbpqIxbprsnvof2_Kepk5zDDDj7E7hAcE0I8ZgIh4UQ7USK7PWIVSEEey-pxVJQBuLcIlu8p5D1BCTRW7fe8Pof5M_TTkuo_1eBxC_bG6Zhex_c7h5t8XbLt63i5f-OZt_bp82nBPGkbeyJ2JEjCgiRoCtYJig7sgFZlolJRBGm-Vbwx01HXKSu9Fq4wFZYIwYsHu59kh9b9TyKPb91P6KY_OGCzDymIp4Vzyqc85heiG9HVo09EhuBO8m-FdUXeCd1r8ASluSQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881401691</pqid></control><display><type>article</type><title>Some groups of type VF</title><source>SpringerNature Journals</source><creator>Leary, Ian J. ; Nucinkis, Brita E.A.</creator><creatorcontrib>Leary, Ian J. ; Nucinkis, Brita E.A.</creatorcontrib><description>A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-002-0254-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Inventiones mathematicae, 2003-01, Vol.151 (1), p.135-165</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-54d8f401e18f70e2a32f51de4628f8644e48c96c580b2bb694cc3a689068e383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leary, Ian J.</creatorcontrib><creatorcontrib>Nucinkis, Brita E.A.</creatorcontrib><title>Some groups of type VF</title><title>Inventiones mathematicae</title><description>A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]</description><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotj81LAzEUxIMouFavgrfFe_S9l2w-jlJsFQoeLF7DbpqIxbprsnvof2_Kepk5zDDDj7E7hAcE0I8ZgIh4UQ7USK7PWIVSEEey-pxVJQBuLcIlu8p5D1BCTRW7fe8Pof5M_TTkuo_1eBxC_bG6Zhex_c7h5t8XbLt63i5f-OZt_bp82nBPGkbeyJ2JEjCgiRoCtYJig7sgFZlolJRBGm-Vbwx01HXKSu9Fq4wFZYIwYsHu59kh9b9TyKPb91P6KY_OGCzDymIp4Vzyqc85heiG9HVo09EhuBO8m-FdUXeCd1r8ASluSQ4</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Leary, Ian J.</creator><creator>Nucinkis, Brita E.A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200301</creationdate><title>Some groups of type VF</title><author>Leary, Ian J. ; Nucinkis, Brita E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-54d8f401e18f70e2a32f51de4628f8644e48c96c580b2bb694cc3a689068e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leary, Ian J.</creatorcontrib><creatorcontrib>Nucinkis, Brita E.A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leary, Ian J.</au><au>Nucinkis, Brita E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some groups of type VF</atitle><jtitle>Inventiones mathematicae</jtitle><date>2003-01</date><risdate>2003</risdate><volume>151</volume><issue>1</issue><spage>135</spage><epage>165</epage><pages>135-165</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-002-0254-7</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2003-01, Vol.151 (1), p.135-165
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_881401691
source SpringerNature Journals
title Some groups of type VF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20groups%20of%20type%20VF&rft.jtitle=Inventiones%20mathematicae&rft.au=Leary,%20Ian%20J.&rft.date=2003-01&rft.volume=151&rft.issue=1&rft.spage=135&rft.epage=165&rft.pages=135-165&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-002-0254-7&rft_dat=%3Cproquest_cross%3E2418800911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881401691&rft_id=info:pmid/&rfr_iscdi=true