Some groups of type VF
A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follow...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2003-01, Vol.151 (1), p.135-165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Inventiones mathematicae |
container_volume | 151 |
creator | Leary, Ian J. Nucinkis, Brita E.A. |
description | A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00222-002-0254-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881401691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418800911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-54d8f401e18f70e2a32f51de4628f8644e48c96c580b2bb694cc3a689068e383</originalsourceid><addsrcrecordid>eNotj81LAzEUxIMouFavgrfFe_S9l2w-jlJsFQoeLF7DbpqIxbprsnvof2_Kepk5zDDDj7E7hAcE0I8ZgIh4UQ7USK7PWIVSEEey-pxVJQBuLcIlu8p5D1BCTRW7fe8Pof5M_TTkuo_1eBxC_bG6Zhex_c7h5t8XbLt63i5f-OZt_bp82nBPGkbeyJ2JEjCgiRoCtYJig7sgFZlolJRBGm-Vbwx01HXKSu9Fq4wFZYIwYsHu59kh9b9TyKPb91P6KY_OGCzDymIp4Vzyqc85heiG9HVo09EhuBO8m-FdUXeCd1r8ASluSQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881401691</pqid></control><display><type>article</type><title>Some groups of type VF</title><source>SpringerNature Journals</source><creator>Leary, Ian J. ; Nucinkis, Brita E.A.</creator><creatorcontrib>Leary, Ian J. ; Nucinkis, Brita E.A.</creatorcontrib><description>A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-002-0254-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Inventiones mathematicae, 2003-01, Vol.151 (1), p.135-165</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-54d8f401e18f70e2a32f51de4628f8644e48c96c580b2bb694cc3a689068e383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leary, Ian J.</creatorcontrib><creatorcontrib>Nucinkis, Brita E.A.</creatorcontrib><title>Some groups of type VF</title><title>Inventiones mathematicae</title><description>A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]</description><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotj81LAzEUxIMouFavgrfFe_S9l2w-jlJsFQoeLF7DbpqIxbprsnvof2_Kepk5zDDDj7E7hAcE0I8ZgIh4UQ7USK7PWIVSEEey-pxVJQBuLcIlu8p5D1BCTRW7fe8Pof5M_TTkuo_1eBxC_bG6Zhex_c7h5t8XbLt63i5f-OZt_bp82nBPGkbeyJ2JEjCgiRoCtYJig7sgFZlolJRBGm-Vbwx01HXKSu9Fq4wFZYIwYsHu59kh9b9TyKPb91P6KY_OGCzDymIp4Vzyqc85heiG9HVo09EhuBO8m-FdUXeCd1r8ASluSQ4</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Leary, Ian J.</creator><creator>Nucinkis, Brita E.A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200301</creationdate><title>Some groups of type VF</title><author>Leary, Ian J. ; Nucinkis, Brita E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-54d8f401e18f70e2a32f51de4628f8644e48c96c580b2bb694cc3a689068e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leary, Ian J.</creatorcontrib><creatorcontrib>Nucinkis, Brita E.A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leary, Ian J.</au><au>Nucinkis, Brita E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some groups of type VF</atitle><jtitle>Inventiones mathematicae</jtitle><date>2003-01</date><risdate>2003</risdate><volume>151</volume><issue>1</issue><spage>135</spage><epage>165</epage><pages>135-165</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>A group is of type VF if it has a finite-index subgroup which has a finite classifying space. We construct groups of type VF in which the centralizers of some elements of finite order are not of type VF and groups of type VF containing infinitely many conjugacy classes of finite subgroups. It follows that a group G of type VF need not admit a finite-type universal proper G-space. We construct groups G for which the minimal dimension of a universal proper G-space is strictly greater than the virtual cohomological dimension of G. Each of our groups embeds in GL^sub m^() for sufficiently large m. Some applications to K-theory are also considered.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-002-0254-7</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2003-01, Vol.151 (1), p.135-165 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_881401691 |
source | SpringerNature Journals |
title | Some groups of type VF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20groups%20of%20type%20VF&rft.jtitle=Inventiones%20mathematicae&rft.au=Leary,%20Ian%20J.&rft.date=2003-01&rft.volume=151&rft.issue=1&rft.spage=135&rft.epage=165&rft.pages=135-165&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-002-0254-7&rft_dat=%3Cproquest_cross%3E2418800911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881401691&rft_id=info:pmid/&rfr_iscdi=true |