Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity

In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 1998-12, Vol.145 (2), p.99-127
Hauptverfasser: ELLIOTT, C. M, SCHÄTZLE, R, STOTH, B. E. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2
container_start_page 99
container_title Archive for rational mechanics and analysis
container_volume 145
creator ELLIOTT, C. M
SCHÄTZLE, R
STOTH, B. E. E
description In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002050050125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881401003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418796601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d83558ba2da942a1cbf017ce014cce81280a4785a950652bf6ecde9b606292e83</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouK4evQfxWp2kTT-OsvgFC17Ua0nT6Zqlm9RMKux_b8suiDAwPPi99-Axdi3gTgAU9wQgQcF0QqoTthBZKhPIi_SULQAgTSoli3N2QbSdpUzzBaNPS8aTjXtOvh-j9Y6477jmLW7QYdAR-aCDbnxvTYJ9b4doDac9RdxxHSxZt-HW8fiFfIfaJZ3Fvp2lD_s5isYBg_GuHU20P1PTJTvrdE94dfxL9vH0-L56SdZvz6-rh3ViZCVi0papUmWjZaurTGphmg5EYRBEZgyWQpags6JUulKQK9l0OZoWqyaHXFYSy3TJbg65Q_DfI1Kst34Mbqqsy1JkMI2WTlBygEzwRAG7egh2p8O-FlDPs9b_Zp3422OoJqP7LmhnLP2ZpnZV5ekv5bp41A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881401003</pqid></control><display><type>article</type><title>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</title><source>SpringerNature Journals</source><creator>ELLIOTT, C. M ; SCHÄTZLE, R ; STOTH, B. E. E</creator><creatorcontrib>ELLIOTT, C. M ; SCHÄTZLE, R ; STOTH, B. E. E</creatorcontrib><description>In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050125</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Magnetic fields ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Phenomenological theories (two-fluid, ginzburg-landau, etc.) ; Physics ; Studies ; Superconductivity ; Theory and models of superconducting state</subject><ispartof>Archive for rational mechanics and analysis, 1998-12, Vol.145 (2), p.99-127</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d83558ba2da942a1cbf017ce014cce81280a4785a950652bf6ecde9b606292e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1606596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ELLIOTT, C. M</creatorcontrib><creatorcontrib>SCHÄTZLE, R</creatorcontrib><creatorcontrib>STOTH, B. E. E</creatorcontrib><title>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</title><title>Archive for rational mechanics and analysis</title><description>In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Phenomenological theories (two-fluid, ginzburg-landau, etc.)</subject><subject>Physics</subject><subject>Studies</subject><subject>Superconductivity</subject><subject>Theory and models of superconducting state</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkM1LxDAQxYMouK4evQfxWp2kTT-OsvgFC17Ua0nT6Zqlm9RMKux_b8suiDAwPPi99-Axdi3gTgAU9wQgQcF0QqoTthBZKhPIi_SULQAgTSoli3N2QbSdpUzzBaNPS8aTjXtOvh-j9Y6477jmLW7QYdAR-aCDbnxvTYJ9b4doDac9RdxxHSxZt-HW8fiFfIfaJZ3Fvp2lD_s5isYBg_GuHU20P1PTJTvrdE94dfxL9vH0-L56SdZvz6-rh3ViZCVi0papUmWjZaurTGphmg5EYRBEZgyWQpags6JUulKQK9l0OZoWqyaHXFYSy3TJbg65Q_DfI1Kst34Mbqqsy1JkMI2WTlBygEzwRAG7egh2p8O-FlDPs9b_Zp3422OoJqP7LmhnLP2ZpnZV5ekv5bp41A</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>ELLIOTT, C. M</creator><creator>SCHÄTZLE, R</creator><creator>STOTH, B. E. E</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19981201</creationdate><title>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</title><author>ELLIOTT, C. M ; SCHÄTZLE, R ; STOTH, B. E. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d83558ba2da942a1cbf017ce014cce81280a4785a950652bf6ecde9b606292e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Phenomenological theories (two-fluid, ginzburg-landau, etc.)</topic><topic>Physics</topic><topic>Studies</topic><topic>Superconductivity</topic><topic>Theory and models of superconducting state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELLIOTT, C. M</creatorcontrib><creatorcontrib>SCHÄTZLE, R</creatorcontrib><creatorcontrib>STOTH, B. E. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELLIOTT, C. M</au><au>SCHÄTZLE, R</au><au>STOTH, B. E. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>145</volume><issue>2</issue><spage>99</spage><epage>127</epage><pages>99-127</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050050125</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 1998-12, Vol.145 (2), p.99-127
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881401003
source SpringerNature Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Magnetic fields
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Phenomenological theories (two-fluid, ginzburg-landau, etc.)
Physics
Studies
Superconductivity
Theory and models of superconducting state
title Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20solutions%20of%20a%20degenerate%20parabolic-elliptic%20system%20arising%20in%20the%20mean-field%20theory%20of%20superconductivity&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=ELLIOTT,%20C.%20M&rft.date=1998-12-01&rft.volume=145&rft.issue=2&rft.spage=99&rft.epage=127&rft.pages=99-127&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050050125&rft_dat=%3Cproquest_cross%3E2418796601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881401003&rft_id=info:pmid/&rfr_iscdi=true