Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity
In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged pr...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 1998-12, Vol.145 (2), p.99-127 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 2 |
container_start_page | 99 |
container_title | Archive for rational mechanics and analysis |
container_volume | 145 |
creator | ELLIOTT, C. M SCHÄTZLE, R STOTH, B. E. E |
description | In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s002050050125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881401003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418796601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d83558ba2da942a1cbf017ce014cce81280a4785a950652bf6ecde9b606292e83</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouK4evQfxWp2kTT-OsvgFC17Ua0nT6Zqlm9RMKux_b8suiDAwPPi99-Axdi3gTgAU9wQgQcF0QqoTthBZKhPIi_SULQAgTSoli3N2QbSdpUzzBaNPS8aTjXtOvh-j9Y6477jmLW7QYdAR-aCDbnxvTYJ9b4doDac9RdxxHSxZt-HW8fiFfIfaJZ3Fvp2lD_s5isYBg_GuHU20P1PTJTvrdE94dfxL9vH0-L56SdZvz6-rh3ViZCVi0papUmWjZaurTGphmg5EYRBEZgyWQpags6JUulKQK9l0OZoWqyaHXFYSy3TJbg65Q_DfI1Kst34Mbqqsy1JkMI2WTlBygEzwRAG7egh2p8O-FlDPs9b_Zp3422OoJqP7LmhnLP2ZpnZV5ekv5bp41A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881401003</pqid></control><display><type>article</type><title>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</title><source>SpringerNature Journals</source><creator>ELLIOTT, C. M ; SCHÄTZLE, R ; STOTH, B. E. E</creator><creatorcontrib>ELLIOTT, C. M ; SCHÄTZLE, R ; STOTH, B. E. E</creatorcontrib><description>In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050125</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Magnetic fields ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Phenomenological theories (two-fluid, ginzburg-landau, etc.) ; Physics ; Studies ; Superconductivity ; Theory and models of superconducting state</subject><ispartof>Archive for rational mechanics and analysis, 1998-12, Vol.145 (2), p.99-127</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d83558ba2da942a1cbf017ce014cce81280a4785a950652bf6ecde9b606292e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1606596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ELLIOTT, C. M</creatorcontrib><creatorcontrib>SCHÄTZLE, R</creatorcontrib><creatorcontrib>STOTH, B. E. E</creatorcontrib><title>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</title><title>Archive for rational mechanics and analysis</title><description>In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Phenomenological theories (two-fluid, ginzburg-landau, etc.)</subject><subject>Physics</subject><subject>Studies</subject><subject>Superconductivity</subject><subject>Theory and models of superconducting state</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkM1LxDAQxYMouK4evQfxWp2kTT-OsvgFC17Ua0nT6Zqlm9RMKux_b8suiDAwPPi99-Axdi3gTgAU9wQgQcF0QqoTthBZKhPIi_SULQAgTSoli3N2QbSdpUzzBaNPS8aTjXtOvh-j9Y6477jmLW7QYdAR-aCDbnxvTYJ9b4doDac9RdxxHSxZt-HW8fiFfIfaJZ3Fvp2lD_s5isYBg_GuHU20P1PTJTvrdE94dfxL9vH0-L56SdZvz6-rh3ViZCVi0papUmWjZaurTGphmg5EYRBEZgyWQpags6JUulKQK9l0OZoWqyaHXFYSy3TJbg65Q_DfI1Kst34Mbqqsy1JkMI2WTlBygEzwRAG7egh2p8O-FlDPs9b_Zp3422OoJqP7LmhnLP2ZpnZV5ekv5bp41A</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>ELLIOTT, C. M</creator><creator>SCHÄTZLE, R</creator><creator>STOTH, B. E. E</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19981201</creationdate><title>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</title><author>ELLIOTT, C. M ; SCHÄTZLE, R ; STOTH, B. E. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d83558ba2da942a1cbf017ce014cce81280a4785a950652bf6ecde9b606292e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Phenomenological theories (two-fluid, ginzburg-landau, etc.)</topic><topic>Physics</topic><topic>Studies</topic><topic>Superconductivity</topic><topic>Theory and models of superconducting state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELLIOTT, C. M</creatorcontrib><creatorcontrib>SCHÄTZLE, R</creatorcontrib><creatorcontrib>STOTH, B. E. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELLIOTT, C. M</au><au>SCHÄTZLE, R</au><au>STOTH, B. E. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>145</volume><issue>2</issue><spage>99</spage><epage>127</epage><pages>99-127</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>In a Type-II superconductor the magnetic field penetrates the superconducting body through the formation of vortices. In an extreme Type-II superconductor these vortices reduce to line singularities. Because the number of vortices is large it seems feasible to model their evolution by an averaged problem, known as the mean-field model of superconductivity. We assume that the evolution law of an individual vortex, which underlies the averaging process, involves the current of the generated magnetic field as well as the curvature vector. In the present paper we study a two-dimensional reduction, assuming all vortices to be perpendicular to a given direction. Since both the magnetic field H and the averaged vorticity ω are curl-free, we may represent them via a scalar magnetic potential q and a scalar stream function ψ, respectively. We study existence, uniqueness and asymptotic behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system (with curvature taken into account or not) by means of viscosity and weak solutions. In addition we relate (ψ, q) to solutions (ω, H) of the mean-field equations without curvature. Finally we construct special solutions of the corresponding stationary equations with two or more superconducting phases.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050050125</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 1998-12, Vol.145 (2), p.99-127 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_881401003 |
source | SpringerNature Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology Magnetic fields Mathematical methods in physics Numerical approximation and analysis Ordinary and partial differential equations, boundary value problems Phenomenological theories (two-fluid, ginzburg-landau, etc.) Physics Studies Superconductivity Theory and models of superconducting state |
title | Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20solutions%20of%20a%20degenerate%20parabolic-elliptic%20system%20arising%20in%20the%20mean-field%20theory%20of%20superconductivity&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=ELLIOTT,%20C.%20M&rft.date=1998-12-01&rft.volume=145&rft.issue=2&rft.spage=99&rft.epage=127&rft.pages=99-127&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050050125&rft_dat=%3Cproquest_cross%3E2418796601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881401003&rft_id=info:pmid/&rfr_iscdi=true |