Double Eigenvalue Problems for Hemivariational Inequalities
The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 1997-12, Vol.140 (3), p.225-251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 3 |
container_start_page | 225 |
container_title | Archive for rational mechanics and analysis |
container_volume | 140 |
creator | Motreanu, D. Panagiotopoulos, P. D. |
description | The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s002050050065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881400752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418794061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-8202a2cf98a5bf5d0a95bd6e0efc6adc1145beade4f84c6e3c2b30d12f2da4b23</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWKtH74v31clkk27xJLW1hYIe9LzMZieSsm3aZLfgv7dLvQgPhvf4GGaeEPcSHiXA5CkBIGgYZPSFGMlCYQ5moi7FCABUPtU4uRY3KW0Gi8qMxPNr6OuWs7n_5t2R2p6zjxhOyTZlLsRsyVt_pOip82FHbbba8aGn1nee0624ctQmvvubY_G1mH_Olvn6_W01e1nnFg12eYmAhNZNS9K10w3QVNeNYWBnDTVWykLXTA0XriysYWWxVtBIdNhQUaMai4fz3n0Mh55TV21CH0_XpKosZXF6XQ9QfoZsDClFdtU--i3Fn0pCNdRT_atH_QIpJlgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881400752</pqid></control><display><type>article</type><title>Double Eigenvalue Problems for Hemivariational Inequalities</title><source>Springer Nature - Complete Springer Journals</source><creator>Motreanu, D. ; Panagiotopoulos, P. D.</creator><creatorcontrib>Motreanu, D. ; Panagiotopoulos, P. D.</creatorcontrib><description>The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050065</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Studies</subject><ispartof>Archive for rational mechanics and analysis, 1997-12, Vol.140 (3), p.225-251</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-8202a2cf98a5bf5d0a95bd6e0efc6adc1145beade4f84c6e3c2b30d12f2da4b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Motreanu, D.</creatorcontrib><creatorcontrib>Panagiotopoulos, P. D.</creatorcontrib><title>Double Eigenvalue Problems for Hemivariational Inequalities</title><title>Archive for rational mechanics and analysis</title><description>The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]</description><subject>Studies</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkEFLAzEQhYMoWKtH74v31clkk27xJLW1hYIe9LzMZieSsm3aZLfgv7dLvQgPhvf4GGaeEPcSHiXA5CkBIGgYZPSFGMlCYQ5moi7FCABUPtU4uRY3KW0Gi8qMxPNr6OuWs7n_5t2R2p6zjxhOyTZlLsRsyVt_pOip82FHbbba8aGn1nee0624ctQmvvubY_G1mH_Olvn6_W01e1nnFg12eYmAhNZNS9K10w3QVNeNYWBnDTVWykLXTA0XriysYWWxVtBIdNhQUaMai4fz3n0Mh55TV21CH0_XpKosZXF6XQ9QfoZsDClFdtU--i3Fn0pCNdRT_atH_QIpJlgI</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Motreanu, D.</creator><creator>Panagiotopoulos, P. D.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19971201</creationdate><title>Double Eigenvalue Problems for Hemivariational Inequalities</title><author>Motreanu, D. ; Panagiotopoulos, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-8202a2cf98a5bf5d0a95bd6e0efc6adc1145beade4f84c6e3c2b30d12f2da4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motreanu, D.</creatorcontrib><creatorcontrib>Panagiotopoulos, P. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motreanu, D.</au><au>Panagiotopoulos, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Eigenvalue Problems for Hemivariational Inequalities</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>140</volume><issue>3</issue><spage>225</spage><epage>251</epage><pages>225-251</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s002050050065</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 1997-12, Vol.140 (3), p.225-251 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_881400752 |
source | Springer Nature - Complete Springer Journals |
subjects | Studies |
title | Double Eigenvalue Problems for Hemivariational Inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Eigenvalue%20Problems%20for%20Hemivariational%20Inequalities&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Motreanu,%20D.&rft.date=1997-12-01&rft.volume=140&rft.issue=3&rft.spage=225&rft.epage=251&rft.pages=225-251&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s002050050065&rft_dat=%3Cproquest_cross%3E2418794061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881400752&rft_id=info:pmid/&rfr_iscdi=true |