Double Eigenvalue Problems for Hemivariational Inequalities

The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 1997-12, Vol.140 (3), p.225-251
Hauptverfasser: Motreanu, D., Panagiotopoulos, P. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 3
container_start_page 225
container_title Archive for rational mechanics and analysis
container_volume 140
creator Motreanu, D.
Panagiotopoulos, P. D.
description The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002050050065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881400752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418794061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-8202a2cf98a5bf5d0a95bd6e0efc6adc1145beade4f84c6e3c2b30d12f2da4b23</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWKtH74v31clkk27xJLW1hYIe9LzMZieSsm3aZLfgv7dLvQgPhvf4GGaeEPcSHiXA5CkBIGgYZPSFGMlCYQ5moi7FCABUPtU4uRY3KW0Gi8qMxPNr6OuWs7n_5t2R2p6zjxhOyTZlLsRsyVt_pOip82FHbbba8aGn1nee0624ctQmvvubY_G1mH_Olvn6_W01e1nnFg12eYmAhNZNS9K10w3QVNeNYWBnDTVWykLXTA0XriysYWWxVtBIdNhQUaMai4fz3n0Mh55TV21CH0_XpKosZXF6XQ9QfoZsDClFdtU--i3Fn0pCNdRT_atH_QIpJlgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881400752</pqid></control><display><type>article</type><title>Double Eigenvalue Problems for Hemivariational Inequalities</title><source>Springer Nature - Complete Springer Journals</source><creator>Motreanu, D. ; Panagiotopoulos, P. D.</creator><creatorcontrib>Motreanu, D. ; Panagiotopoulos, P. D.</creatorcontrib><description>The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050065</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Studies</subject><ispartof>Archive for rational mechanics and analysis, 1997-12, Vol.140 (3), p.225-251</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-8202a2cf98a5bf5d0a95bd6e0efc6adc1145beade4f84c6e3c2b30d12f2da4b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Motreanu, D.</creatorcontrib><creatorcontrib>Panagiotopoulos, P. D.</creatorcontrib><title>Double Eigenvalue Problems for Hemivariational Inequalities</title><title>Archive for rational mechanics and analysis</title><description>The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]</description><subject>Studies</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkEFLAzEQhYMoWKtH74v31clkk27xJLW1hYIe9LzMZieSsm3aZLfgv7dLvQgPhvf4GGaeEPcSHiXA5CkBIGgYZPSFGMlCYQ5moi7FCABUPtU4uRY3KW0Gi8qMxPNr6OuWs7n_5t2R2p6zjxhOyTZlLsRsyVt_pOip82FHbbba8aGn1nee0624ctQmvvubY_G1mH_Olvn6_W01e1nnFg12eYmAhNZNS9K10w3QVNeNYWBnDTVWykLXTA0XriysYWWxVtBIdNhQUaMai4fz3n0Mh55TV21CH0_XpKosZXF6XQ9QfoZsDClFdtU--i3Fn0pCNdRT_atH_QIpJlgI</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Motreanu, D.</creator><creator>Panagiotopoulos, P. D.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19971201</creationdate><title>Double Eigenvalue Problems for Hemivariational Inequalities</title><author>Motreanu, D. ; Panagiotopoulos, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-8202a2cf98a5bf5d0a95bd6e0efc6adc1145beade4f84c6e3c2b30d12f2da4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motreanu, D.</creatorcontrib><creatorcontrib>Panagiotopoulos, P. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motreanu, D.</au><au>Panagiotopoulos, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Eigenvalue Problems for Hemivariational Inequalities</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>140</volume><issue>3</issue><spage>225</spage><epage>251</epage><pages>225-251</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>The aim of the present paper is to study a new type of eigenvalue problem, called a double eigenvalue problem, which arises in hemivariational inequalities related to nonconvex nonsmooth energy functionals. The paper provides existence results as well as some qualitative properties for the solutions to double eigenvalue problems for hemivariational inequalities under the presence of given nonlinear compact operators which are not necessarily of a variational structure. It presents three different approaches to such problems: minimization, minimax methods and (sub) critical point theory on a sphere. Applications illustrate the theory.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s002050050065</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 1997-12, Vol.140 (3), p.225-251
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881400752
source Springer Nature - Complete Springer Journals
subjects Studies
title Double Eigenvalue Problems for Hemivariational Inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Eigenvalue%20Problems%20for%20Hemivariational%20Inequalities&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Motreanu,%20D.&rft.date=1997-12-01&rft.volume=140&rft.issue=3&rft.spage=225&rft.epage=251&rft.pages=225-251&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s002050050065&rft_dat=%3Cproquest_cross%3E2418794061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881400752&rft_id=info:pmid/&rfr_iscdi=true