Global existence for elastic waves with memory
We treat the Cauchy problem for nonlinear systems of viscoelasticity with a memory term. We study the existence and the time decay of the solution to this nonlinear problem. The kernel of the memory term includes integrable singularity at zero and polynomial decay at infinity. We prove the existence...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2005-06, Vol.176 (3), p.303-330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 3 |
container_start_page | 303 |
container_title | Archive for rational mechanics and analysis |
container_volume | 176 |
creator | GEORGIEV, Vladimir RUBINO, Bruno SAMPALMIERI, Rosella |
description | We treat the Cauchy problem for nonlinear systems of viscoelasticity with a memory term. We study the existence and the time decay of the solution to this nonlinear problem. The kernel of the memory term includes integrable singularity at zero and polynomial decay at infinity. We prove the existence of a global solution for space dimensions n≥3 and arbitrary quadratic nonlinearities.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00205-004-0345-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881399082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418761191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-98ccb3893f5d74e0c9b42ccadfa5c3cd5eb32232c617d8a7850ad323fc44d8473</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKc_wLci-Jh5k5u06aMM3YSBL_oc0tsEO7p1Jp1z_96WDXw6XDjn3MPH2L2AmQAonhKABM0BFAdUmssLNhEKJYe8wEs2AQDkpZbFNbtJaT2eEvMJmy3arnJt5n-b1Pst-Sx0MfOtS31D2cH9-JQdmv4r2_hNF4-37Cq4Nvm7s07Z5-vLx3zJV--Lt_nzihOC7HlpiCo0JQZdF8oDlZWSRK4OThNSrX2FUqKkXBS1cYXR4OphUCClaqMKnLKHU-8udt97n3q77vZxO7y0xggsSzByMImTiWKXUvTB7mKzcfFoBdiRij1RsQMVO1KxY-bxXOwSuTZEt6Um_Qdzgwq1xj_WkWDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881399082</pqid></control><display><type>article</type><title>Global existence for elastic waves with memory</title><source>SpringerLink Journals - AutoHoldings</source><creator>GEORGIEV, Vladimir ; RUBINO, Bruno ; SAMPALMIERI, Rosella</creator><creatorcontrib>GEORGIEV, Vladimir ; RUBINO, Bruno ; SAMPALMIERI, Rosella</creatorcontrib><description>We treat the Cauchy problem for nonlinear systems of viscoelasticity with a memory term. We study the existence and the time decay of the solution to this nonlinear problem. The kernel of the memory term includes integrable singularity at zero and polynomial decay at infinity. We prove the existence of a global solution for space dimensions n≥3 and arbitrary quadratic nonlinearities.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-004-0345-2</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Nonlinear systems ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Studies ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Archive for rational mechanics and analysis, 2005-06, Vol.176 (3), p.303-330</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-98ccb3893f5d74e0c9b42ccadfa5c3cd5eb32232c617d8a7850ad323fc44d8473</citedby><cites>FETCH-LOGICAL-c302t-98ccb3893f5d74e0c9b42ccadfa5c3cd5eb32232c617d8a7850ad323fc44d8473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16834355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GEORGIEV, Vladimir</creatorcontrib><creatorcontrib>RUBINO, Bruno</creatorcontrib><creatorcontrib>SAMPALMIERI, Rosella</creatorcontrib><title>Global existence for elastic waves with memory</title><title>Archive for rational mechanics and analysis</title><description>We treat the Cauchy problem for nonlinear systems of viscoelasticity with a memory term. We study the existence and the time decay of the solution to this nonlinear problem. The kernel of the memory term includes integrable singularity at zero and polynomial decay at infinity. We prove the existence of a global solution for space dimensions n≥3 and arbitrary quadratic nonlinearities.[PUBLICATION ABSTRACT]</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Nonlinear systems</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkFFLwzAUhYMoOKc_wLci-Jh5k5u06aMM3YSBL_oc0tsEO7p1Jp1z_96WDXw6XDjn3MPH2L2AmQAonhKABM0BFAdUmssLNhEKJYe8wEs2AQDkpZbFNbtJaT2eEvMJmy3arnJt5n-b1Pst-Sx0MfOtS31D2cH9-JQdmv4r2_hNF4-37Cq4Nvm7s07Z5-vLx3zJV--Lt_nzihOC7HlpiCo0JQZdF8oDlZWSRK4OThNSrX2FUqKkXBS1cYXR4OphUCClaqMKnLKHU-8udt97n3q77vZxO7y0xggsSzByMImTiWKXUvTB7mKzcfFoBdiRij1RsQMVO1KxY-bxXOwSuTZEt6Um_Qdzgwq1xj_WkWDo</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>GEORGIEV, Vladimir</creator><creator>RUBINO, Bruno</creator><creator>SAMPALMIERI, Rosella</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20050601</creationdate><title>Global existence for elastic waves with memory</title><author>GEORGIEV, Vladimir ; RUBINO, Bruno ; SAMPALMIERI, Rosella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-98ccb3893f5d74e0c9b42ccadfa5c3cd5eb32232c617d8a7850ad323fc44d8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Nonlinear systems</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GEORGIEV, Vladimir</creatorcontrib><creatorcontrib>RUBINO, Bruno</creatorcontrib><creatorcontrib>SAMPALMIERI, Rosella</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GEORGIEV, Vladimir</au><au>RUBINO, Bruno</au><au>SAMPALMIERI, Rosella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global existence for elastic waves with memory</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>176</volume><issue>3</issue><spage>303</spage><epage>330</epage><pages>303-330</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>We treat the Cauchy problem for nonlinear systems of viscoelasticity with a memory term. We study the existence and the time decay of the solution to this nonlinear problem. The kernel of the memory term includes integrable singularity at zero and polynomial decay at infinity. We prove the existence of a global solution for space dimensions n≥3 and arbitrary quadratic nonlinearities.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00205-004-0345-2</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2005-06, Vol.176 (3), p.303-330 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_881399082 |
source | SpringerLink Journals - AutoHoldings |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical methods in physics Nonlinear systems Numerical approximation and analysis Ordinary and partial differential equations, boundary value problems Physics Solid mechanics Structural and continuum mechanics Studies Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Global existence for elastic waves with memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20existence%20for%20elastic%20waves%20with%20memory&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=GEORGIEV,%20Vladimir&rft.date=2005-06-01&rft.volume=176&rft.issue=3&rft.spage=303&rft.epage=330&rft.pages=303-330&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-004-0345-2&rft_dat=%3Cproquest_cross%3E2418761191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881399082&rft_id=info:pmid/&rfr_iscdi=true |