From the Boltzmann equations to the equations of incompressible fluid mechanics, II

We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2001-06, Vol.158 (3), p.195-211
Hauptverfasser: LIONS, P.-L, MASMOUDI, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 3
container_start_page 195
container_title Archive for rational mechanics and analysis
container_volume 158
creator LIONS, P.-L
MASMOUDI, N
description We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002050100144
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881398228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418781871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8cf5892ff013d866a75f2f87c4c5324c9e81760eaae1a7014e03dcc2428d678d3</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhi0EEqUwsluIkcDZTmJnhIpCpUoMwBwZx1ZdJXbrSwb49aS0EjDd13Pv6V5CLhncMgB5hwAcChhzludHZMJywTMopTgmEwAQWVVweUrOENe7kotyQl7nKXa0X1n6ENv-q9MhULsddO9jQNrHn9FvIzrqg4ndJllE_9Fa6trBN7SzZqWDN3hDF4tzcuJ0i_biEKfkff74NnvOli9Pi9n9MjO8Yn2mjCtUxZ0DJhpVlloWjjslTW4KwXNTWcVkCVZry7Qcf7IgGmN4zlVTStWIKbna625S3A4W-3odhxTGk7VSTFSKczVC2R4yKSIm6-pN8p1OnzWDemdb_c-2kb8-iGo0unVJB-PxzxJIJpj4Brt4a3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881398228</pqid></control><display><type>article</type><title>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</title><source>SpringerNature Journals</source><creator>LIONS, P.-L ; MASMOUDI, N</creator><creatorcontrib>LIONS, P.-L ; MASMOUDI, N</creatorcontrib><description>We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050100144</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Archive for rational mechanics and analysis, 2001-06, Vol.158 (3), p.195-211</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8cf5892ff013d866a75f2f87c4c5324c9e81760eaae1a7014e03dcc2428d678d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1007131$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIONS, P.-L</creatorcontrib><creatorcontrib>MASMOUDI, N</creatorcontrib><title>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</title><title>Archive for rational mechanics and analysis</title><description>We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkD1PwzAQhi0EEqUwsluIkcDZTmJnhIpCpUoMwBwZx1ZdJXbrSwb49aS0EjDd13Pv6V5CLhncMgB5hwAcChhzludHZMJywTMopTgmEwAQWVVweUrOENe7kotyQl7nKXa0X1n6ENv-q9MhULsddO9jQNrHn9FvIzrqg4ndJllE_9Fa6trBN7SzZqWDN3hDF4tzcuJ0i_biEKfkff74NnvOli9Pi9n9MjO8Yn2mjCtUxZ0DJhpVlloWjjslTW4KwXNTWcVkCVZry7Qcf7IgGmN4zlVTStWIKbna625S3A4W-3odhxTGk7VSTFSKczVC2R4yKSIm6-pN8p1OnzWDemdb_c-2kb8-iGo0unVJB-PxzxJIJpj4Brt4a3A</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>LIONS, P.-L</creator><creator>MASMOUDI, N</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010601</creationdate><title>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</title><author>LIONS, P.-L ; MASMOUDI, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8cf5892ff013d866a75f2f87c4c5324c9e81760eaae1a7014e03dcc2428d678d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIONS, P.-L</creatorcontrib><creatorcontrib>MASMOUDI, N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIONS, P.-L</au><au>MASMOUDI, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2001-06-01</date><risdate>2001</risdate><volume>158</volume><issue>3</issue><spage>195</spage><epage>211</epage><pages>195-211</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050100144</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2001-06, Vol.158 (3), p.195-211
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881398228
source SpringerNature Journals
subjects Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
title From the Boltzmann equations to the equations of incompressible fluid mechanics, II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20the%20Boltzmann%20equations%20to%20the%20equations%20of%20incompressible%20fluid%20mechanics,%20II&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=LIONS,%20P.-L&rft.date=2001-06-01&rft.volume=158&rft.issue=3&rft.spage=195&rft.epage=211&rft.pages=195-211&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050100144&rft_dat=%3Cproquest_cross%3E2418781871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881398228&rft_id=info:pmid/&rfr_iscdi=true