From the Boltzmann equations to the equations of incompressible fluid mechanics, II
We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain sim...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2001-06, Vol.158 (3), p.195-211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 3 |
container_start_page | 195 |
container_title | Archive for rational mechanics and analysis |
container_volume | 158 |
creator | LIONS, P.-L MASMOUDI, N |
description | We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s002050100144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881398228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418781871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8cf5892ff013d866a75f2f87c4c5324c9e81760eaae1a7014e03dcc2428d678d3</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhi0EEqUwsluIkcDZTmJnhIpCpUoMwBwZx1ZdJXbrSwb49aS0EjDd13Pv6V5CLhncMgB5hwAcChhzludHZMJywTMopTgmEwAQWVVweUrOENe7kotyQl7nKXa0X1n6ENv-q9MhULsddO9jQNrHn9FvIzrqg4ndJllE_9Fa6trBN7SzZqWDN3hDF4tzcuJ0i_biEKfkff74NnvOli9Pi9n9MjO8Yn2mjCtUxZ0DJhpVlloWjjslTW4KwXNTWcVkCVZry7Qcf7IgGmN4zlVTStWIKbna625S3A4W-3odhxTGk7VSTFSKczVC2R4yKSIm6-pN8p1OnzWDemdb_c-2kb8-iGo0unVJB-PxzxJIJpj4Brt4a3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881398228</pqid></control><display><type>article</type><title>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</title><source>SpringerNature Journals</source><creator>LIONS, P.-L ; MASMOUDI, N</creator><creatorcontrib>LIONS, P.-L ; MASMOUDI, N</creatorcontrib><description>We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050100144</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Archive for rational mechanics and analysis, 2001-06, Vol.158 (3), p.195-211</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8cf5892ff013d866a75f2f87c4c5324c9e81760eaae1a7014e03dcc2428d678d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1007131$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIONS, P.-L</creatorcontrib><creatorcontrib>MASMOUDI, N</creatorcontrib><title>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</title><title>Archive for rational mechanics and analysis</title><description>We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkD1PwzAQhi0EEqUwsluIkcDZTmJnhIpCpUoMwBwZx1ZdJXbrSwb49aS0EjDd13Pv6V5CLhncMgB5hwAcChhzludHZMJywTMopTgmEwAQWVVweUrOENe7kotyQl7nKXa0X1n6ENv-q9MhULsddO9jQNrHn9FvIzrqg4ndJllE_9Fa6trBN7SzZqWDN3hDF4tzcuJ0i_biEKfkff74NnvOli9Pi9n9MjO8Yn2mjCtUxZ0DJhpVlloWjjslTW4KwXNTWcVkCVZry7Qcf7IgGmN4zlVTStWIKbna625S3A4W-3odhxTGk7VSTFSKczVC2R4yKSIm6-pN8p1OnzWDemdb_c-2kb8-iGo0unVJB-PxzxJIJpj4Brt4a3A</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>LIONS, P.-L</creator><creator>MASMOUDI, N</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010601</creationdate><title>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</title><author>LIONS, P.-L ; MASMOUDI, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8cf5892ff013d866a75f2f87c4c5324c9e81760eaae1a7014e03dcc2428d678d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIONS, P.-L</creatorcontrib><creatorcontrib>MASMOUDI, N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIONS, P.-L</au><au>MASMOUDI, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From the Boltzmann equations to the equations of incompressible fluid mechanics, II</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2001-06-01</date><risdate>2001</risdate><volume>158</volume><issue>3</issue><spage>195</spage><epage>211</epage><pages>195-211</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050100144</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2001-06, Vol.158 (3), p.195-211 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_881398228 |
source | SpringerNature Journals |
subjects | Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics |
title | From the Boltzmann equations to the equations of incompressible fluid mechanics, II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20the%20Boltzmann%20equations%20to%20the%20equations%20of%20incompressible%20fluid%20mechanics,%20II&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=LIONS,%20P.-L&rft.date=2001-06-01&rft.volume=158&rft.issue=3&rft.spage=195&rft.epage=211&rft.pages=195-211&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050100144&rft_dat=%3Cproquest_cross%3E2418781871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881398228&rft_id=info:pmid/&rfr_iscdi=true |