The regularity of critical points of polyconvex functionals
In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2004-04, Vol.172 (1), p.133-152 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Archive for rational mechanics and analysis |
container_volume | 172 |
creator | SZEKELYHIDI, Laszlo JR |
description | In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00205-003-0300-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881398118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418749501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDKJgrf4Ab4vgMfqyLx9bPEmxKhS81HNI00S3rJs12RX7782yBU_zPoeZIeSawR0DUPcJoARBAZACAlB1QmaMY0lBKjwlMxg3C1Gqc3KR0n5sS5Qz8rD5dEV0H0NjYt0fiuALm4vamqboQt32aRx1oTnY0P6438IPre3r0JomXZIzn8FdHXFO3ldPm-ULXb89vy4f19RmJT31VnAlfemdV8pYxb0UXhrcVcKYBdtZnlu1Q86VKo0RDtl263HrnEXBvMA5uZl4uxi-B5d6vQ9DHBXoqmK4qBir8hGbjmwMKUXndRfrLxMPmoEeI9JTRDo712NEWuWf2yOxSdmwj6a1dfp_FJJLFBz_AJUyZq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881398118</pqid></control><display><type>article</type><title>The regularity of critical points of polyconvex functionals</title><source>SpringerLink Journals</source><creator>SZEKELYHIDI, Laszlo JR</creator><creatorcontrib>SZEKELYHIDI, Laszlo JR</creatorcontrib><description>In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-003-0300-7</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Theory and numerical methods</subject><ispartof>Archive for rational mechanics and analysis, 2004-04, Vol.172 (1), p.133-152</ispartof><rights>2004 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</citedby><cites>FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15646354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SZEKELYHIDI, Laszlo JR</creatorcontrib><title>The regularity of critical points of polyconvex functionals</title><title>Archive for rational mechanics and analysis</title><description>In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Theory and numerical methods</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUE1LAzEUDKJgrf4Ab4vgMfqyLx9bPEmxKhS81HNI00S3rJs12RX7782yBU_zPoeZIeSawR0DUPcJoARBAZACAlB1QmaMY0lBKjwlMxg3C1Gqc3KR0n5sS5Qz8rD5dEV0H0NjYt0fiuALm4vamqboQt32aRx1oTnY0P6438IPre3r0JomXZIzn8FdHXFO3ldPm-ULXb89vy4f19RmJT31VnAlfemdV8pYxb0UXhrcVcKYBdtZnlu1Q86VKo0RDtl263HrnEXBvMA5uZl4uxi-B5d6vQ9DHBXoqmK4qBir8hGbjmwMKUXndRfrLxMPmoEeI9JTRDo712NEWuWf2yOxSdmwj6a1dfp_FJJLFBz_AJUyZq4</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>SZEKELYHIDI, Laszlo JR</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040401</creationdate><title>The regularity of critical points of polyconvex functionals</title><author>SZEKELYHIDI, Laszlo JR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SZEKELYHIDI, Laszlo JR</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SZEKELYHIDI, Laszlo JR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regularity of critical points of polyconvex functionals</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>172</volume><issue>1</issue><spage>133</spage><epage>152</epage><pages>133-152</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00205-003-0300-7</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2004-04, Vol.172 (1), p.133-152 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_881398118 |
source | SpringerLink Journals |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Theory and numerical methods |
title | The regularity of critical points of polyconvex functionals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regularity%20of%20critical%20points%20of%20polyconvex%20functionals&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=SZEKELYHIDI,%20Laszlo%20JR&rft.date=2004-04-01&rft.volume=172&rft.issue=1&rft.spage=133&rft.epage=152&rft.pages=133-152&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-003-0300-7&rft_dat=%3Cproquest_cross%3E2418749501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881398118&rft_id=info:pmid/&rfr_iscdi=true |