The regularity of critical points of polyconvex functionals

In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2004-04, Vol.172 (1), p.133-152
1. Verfasser: SZEKELYHIDI, Laszlo JR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 133
container_title Archive for rational mechanics and analysis
container_volume 172
creator SZEKELYHIDI, Laszlo JR
description In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00205-003-0300-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881398118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418749501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDKJgrf4Ab4vgMfqyLx9bPEmxKhS81HNI00S3rJs12RX7782yBU_zPoeZIeSawR0DUPcJoARBAZACAlB1QmaMY0lBKjwlMxg3C1Gqc3KR0n5sS5Qz8rD5dEV0H0NjYt0fiuALm4vamqboQt32aRx1oTnY0P6438IPre3r0JomXZIzn8FdHXFO3ldPm-ULXb89vy4f19RmJT31VnAlfemdV8pYxb0UXhrcVcKYBdtZnlu1Q86VKo0RDtl263HrnEXBvMA5uZl4uxi-B5d6vQ9DHBXoqmK4qBir8hGbjmwMKUXndRfrLxMPmoEeI9JTRDo712NEWuWf2yOxSdmwj6a1dfp_FJJLFBz_AJUyZq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881398118</pqid></control><display><type>article</type><title>The regularity of critical points of polyconvex functionals</title><source>SpringerLink Journals</source><creator>SZEKELYHIDI, Laszlo JR</creator><creatorcontrib>SZEKELYHIDI, Laszlo JR</creatorcontrib><description>In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-003-0300-7</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Theory and numerical methods</subject><ispartof>Archive for rational mechanics and analysis, 2004-04, Vol.172 (1), p.133-152</ispartof><rights>2004 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</citedby><cites>FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15646354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SZEKELYHIDI, Laszlo JR</creatorcontrib><title>The regularity of critical points of polyconvex functionals</title><title>Archive for rational mechanics and analysis</title><description>In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Theory and numerical methods</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUE1LAzEUDKJgrf4Ab4vgMfqyLx9bPEmxKhS81HNI00S3rJs12RX7782yBU_zPoeZIeSawR0DUPcJoARBAZACAlB1QmaMY0lBKjwlMxg3C1Gqc3KR0n5sS5Qz8rD5dEV0H0NjYt0fiuALm4vamqboQt32aRx1oTnY0P6438IPre3r0JomXZIzn8FdHXFO3ldPm-ULXb89vy4f19RmJT31VnAlfemdV8pYxb0UXhrcVcKYBdtZnlu1Q86VKo0RDtl263HrnEXBvMA5uZl4uxi-B5d6vQ9DHBXoqmK4qBir8hGbjmwMKUXndRfrLxMPmoEeI9JTRDo712NEWuWf2yOxSdmwj6a1dfp_FJJLFBz_AJUyZq4</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>SZEKELYHIDI, Laszlo JR</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040401</creationdate><title>The regularity of critical points of polyconvex functionals</title><author>SZEKELYHIDI, Laszlo JR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-fc5476f2fef77ac74f65f6a3d85aa91dc45f67d344772aa5e31bbf3beec351f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SZEKELYHIDI, Laszlo JR</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SZEKELYHIDI, Laszlo JR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regularity of critical points of polyconvex functionals</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>172</volume><issue>1</issue><spage>133</spage><epage>152</epage><pages>133-152</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C^sup 1^. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00205-003-0300-7</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2004-04, Vol.172 (1), p.133-152
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881398118
source SpringerLink Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Theory and numerical methods
title The regularity of critical points of polyconvex functionals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regularity%20of%20critical%20points%20of%20polyconvex%20functionals&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=SZEKELYHIDI,%20Laszlo%20JR&rft.date=2004-04-01&rft.volume=172&rft.issue=1&rft.spage=133&rft.epage=152&rft.pages=133-152&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-003-0300-7&rft_dat=%3Cproquest_cross%3E2418749501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881398118&rft_id=info:pmid/&rfr_iscdi=true