Threshold-based Quasi-static Brittle Damage Evolution

We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold, and then investigate the relationship between these threshold models and the energy-based models introduced in Francfort and Marigo (Eur J Mech A Solids 12:149–189, 1993) and Francfort and Garro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2009-11, Vol.194 (2), p.585-609
Hauptverfasser: Garroni, Adriana, Larsen, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 2
container_start_page 585
container_title Archive for rational mechanics and analysis
container_volume 194
creator Garroni, Adriana
Larsen, Christopher J.
description We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold, and then investigate the relationship between these threshold models and the energy-based models introduced in Francfort and Marigo (Eur J Mech A Solids 12:149–189, 1993) and Francfort and Garroni (Ration Mech Anal 182(1):125–152, 2006). A somewhat surprising result is that, while classical solutions for the energy models are also threshold solutions, this is shown not to be the case for nonclassical solutions, that is, solutions with microstructure. A new and arguably more physical definition of solutions with microstructure for the energy-based model is then given, in which the energy minimality property is satisfied by sequences of sets that generate the effective elastic tensors, rather than by the tensors themselves. We prove existence for this energy-based problem, and show that these solutions are also threshold solutions. A by-product of this analysis is that all local minimizers, in both the classical setting and for the new microstructure definition, are also global minimizers.
doi_str_mv 10.1007/s00205-008-0174-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881395940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418734881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-6da9837f89d42536f0fac70df84e6ab0037d00b23d5fccb79debcdb811cea78a3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKd_gG9F8DF6kzRN8qhzfsBAhPkc0nxsHV07k1bwv19Hhz75dLncc849_BC6JnBHAMR9AqDAMYDEQESO1QmakJxRDIVgp2gCAAwrTsU5ukhpc1gpKyaIL9fRp3VbO1ya5F320ZtU4dSZrrLZY6y6rvbZk9malc_m323dd1XbXKKzYOrkr45zij6f58vZK168v7zNHhbYspx3uHBGSSaCVC6nnBUBgrECXJC5L0w5dBAOoKTM8WBtKZTzpXWlJMR6I6RhU3Qz5u5i-9X71OlN28dmeKmlJExxlcMgIqPIxjal6IPexWpr4o8moA9w9AhHD3D0AY5Wg-f2GGySNXWIprFV-jVSojgviBx0dNSl4dSsfPwr8H_4HqIkc60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881395940</pqid></control><display><type>article</type><title>Threshold-based Quasi-static Brittle Damage Evolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Garroni, Adriana ; Larsen, Christopher J.</creator><creatorcontrib>Garroni, Adriana ; Larsen, Christopher J.</creatorcontrib><description>We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold, and then investigate the relationship between these threshold models and the energy-based models introduced in Francfort and Marigo (Eur J Mech A Solids 12:149–189, 1993) and Francfort and Garroni (Ration Mech Anal 182(1):125–152, 2006). A somewhat surprising result is that, while classical solutions for the energy models are also threshold solutions, this is shown not to be the case for nonclassical solutions, that is, solutions with microstructure. A new and arguably more physical definition of solutions with microstructure for the energy-based model is then given, in which the energy minimality property is satisfied by sequences of sets that generate the effective elastic tensors, rather than by the tensors themselves. We prove existence for this energy-based problem, and show that these solutions are also threshold solutions. A by-product of this analysis is that all local minimizers, in both the classical setting and for the new microstructure definition, are also global minimizers.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-008-0174-9</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Exact sciences and technology ; Fluid- and Aerodynamics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical and Computational Physics ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Physics and Astronomy ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2009-11, Vol.194 (2), p.585-609</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-6da9837f89d42536f0fac70df84e6ab0037d00b23d5fccb79debcdb811cea78a3</citedby><cites>FETCH-LOGICAL-c345t-6da9837f89d42536f0fac70df84e6ab0037d00b23d5fccb79debcdb811cea78a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-008-0174-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-008-0174-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21955618$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garroni, Adriana</creatorcontrib><creatorcontrib>Larsen, Christopher J.</creatorcontrib><title>Threshold-based Quasi-static Brittle Damage Evolution</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold, and then investigate the relationship between these threshold models and the energy-based models introduced in Francfort and Marigo (Eur J Mech A Solids 12:149–189, 1993) and Francfort and Garroni (Ration Mech Anal 182(1):125–152, 2006). A somewhat surprising result is that, while classical solutions for the energy models are also threshold solutions, this is shown not to be the case for nonclassical solutions, that is, solutions with microstructure. A new and arguably more physical definition of solutions with microstructure for the energy-based model is then given, in which the energy minimality property is satisfied by sequences of sets that generate the effective elastic tensors, rather than by the tensors themselves. We prove existence for this energy-based problem, and show that these solutions are also threshold solutions. A by-product of this analysis is that all local minimizers, in both the classical setting and for the new microstructure definition, are also global minimizers.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kN1LwzAUxYMoOKd_gG9F8DF6kzRN8qhzfsBAhPkc0nxsHV07k1bwv19Hhz75dLncc849_BC6JnBHAMR9AqDAMYDEQESO1QmakJxRDIVgp2gCAAwrTsU5ukhpc1gpKyaIL9fRp3VbO1ya5F320ZtU4dSZrrLZY6y6rvbZk9malc_m323dd1XbXKKzYOrkr45zij6f58vZK168v7zNHhbYspx3uHBGSSaCVC6nnBUBgrECXJC5L0w5dBAOoKTM8WBtKZTzpXWlJMR6I6RhU3Qz5u5i-9X71OlN28dmeKmlJExxlcMgIqPIxjal6IPexWpr4o8moA9w9AhHD3D0AY5Wg-f2GGySNXWIprFV-jVSojgviBx0dNSl4dSsfPwr8H_4HqIkc60</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Garroni, Adriana</creator><creator>Larsen, Christopher J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091101</creationdate><title>Threshold-based Quasi-static Brittle Damage Evolution</title><author>Garroni, Adriana ; Larsen, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-6da9837f89d42536f0fac70df84e6ab0037d00b23d5fccb79debcdb811cea78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garroni, Adriana</creatorcontrib><creatorcontrib>Larsen, Christopher J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garroni, Adriana</au><au>Larsen, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold-based Quasi-static Brittle Damage Evolution</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>194</volume><issue>2</issue><spage>585</spage><epage>609</epage><pages>585-609</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold, and then investigate the relationship between these threshold models and the energy-based models introduced in Francfort and Marigo (Eur J Mech A Solids 12:149–189, 1993) and Francfort and Garroni (Ration Mech Anal 182(1):125–152, 2006). A somewhat surprising result is that, while classical solutions for the energy models are also threshold solutions, this is shown not to be the case for nonclassical solutions, that is, solutions with microstructure. A new and arguably more physical definition of solutions with microstructure for the energy-based model is then given, in which the energy minimality property is satisfied by sequences of sets that generate the effective elastic tensors, rather than by the tensors themselves. We prove existence for this energy-based problem, and show that these solutions are also threshold solutions. A by-product of this analysis is that all local minimizers, in both the classical setting and for the new microstructure definition, are also global minimizers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-008-0174-9</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2009-11, Vol.194 (2), p.585-609
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881395940
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Complex Systems
Exact sciences and technology
Fluid- and Aerodynamics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mathematical and Computational Physics
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Physics
Physics and Astronomy
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Theoretical
title Threshold-based Quasi-static Brittle Damage Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold-based%20Quasi-static%20Brittle%20Damage%20Evolution&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Garroni,%20Adriana&rft.date=2009-11-01&rft.volume=194&rft.issue=2&rft.spage=585&rft.epage=609&rft.pages=585-609&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-008-0174-9&rft_dat=%3Cproquest_cross%3E2418734881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881395940&rft_id=info:pmid/&rfr_iscdi=true