The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations
In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2009-04, Vol.192 (1), p.165-186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 165 |
container_title | Archive for rational mechanics and analysis |
container_volume | 192 |
creator | Constantin, Adrian Lannes, David |
description | In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena. |
doi_str_mv | 10.1007/s00205-008-0128-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881395905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418734701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G4QXEZvksn8LKVWKxQUadfhmmTqlJlJm7RCd76Db-iTmDJFV64uufeck8NHyCWDGwaQ3wYADpICFBQYLyg_IgOWCk4hy8UxGQCAoKXk-Sk5C2G5f3KRDch89m6Tyc54Z3YdtrXGJnm1jf3ATtvEVckm3kfYYgj4_fk1cU2bYGeSe7vAsLK-DnH74p22oU7G6y1uateFc3JSYRPsxWEOyfxhPBtN6PT58Wl0N6U6lemG6lwLhtxIo99in0IbazmILNdGCtCQS5miKa22qKssWipELMocOEomDRNDctXnrrxbb23YqKXb-i5-qYqCiVKWIKOI9SLtXQjeVmrl6xb9TjFQe3iqh6ciPLWHp3j0XB-CMUQklY846vBr5IzFAgyijve6EE_dwvq_Av-H_wB7DYC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881395905</pqid></control><display><type>article</type><title>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</title><source>SpringerLink Journals</source><creator>Constantin, Adrian ; Lannes, David</creator><creatorcontrib>Constantin, Adrian ; Lannes, David</creatorcontrib><description>In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-008-0128-2</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Buildings. Public works ; Classical Mechanics ; Complex Systems ; Exact sciences and technology ; Fluid dynamics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Hydraulic constructions ; Mathematical and Computational Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2009-04, Vol.192 (1), p.165-186</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</citedby><cites>FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-008-0128-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-008-0128-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21151510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Lannes, David</creatorcontrib><title>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Hydraulic constructions</subject><subject>Mathematical and Computational Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4G4QXEZvksn8LKVWKxQUadfhmmTqlJlJm7RCd76Db-iTmDJFV64uufeck8NHyCWDGwaQ3wYADpICFBQYLyg_IgOWCk4hy8UxGQCAoKXk-Sk5C2G5f3KRDch89m6Tyc54Z3YdtrXGJnm1jf3ATtvEVckm3kfYYgj4_fk1cU2bYGeSe7vAsLK-DnH74p22oU7G6y1uateFc3JSYRPsxWEOyfxhPBtN6PT58Wl0N6U6lemG6lwLhtxIo99in0IbazmILNdGCtCQS5miKa22qKssWipELMocOEomDRNDctXnrrxbb23YqKXb-i5-qYqCiVKWIKOI9SLtXQjeVmrl6xb9TjFQe3iqh6ciPLWHp3j0XB-CMUQklY846vBr5IzFAgyijve6EE_dwvq_Av-H_wB7DYC8</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Constantin, Adrian</creator><creator>Lannes, David</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090401</creationdate><title>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</title><author>Constantin, Adrian ; Lannes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Hydraulic constructions</topic><topic>Mathematical and Computational Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Lannes, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Adrian</au><au>Lannes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>192</volume><issue>1</issue><spage>165</spage><epage>186</epage><pages>165-186</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-008-0128-2</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2009-04, Vol.192 (1), p.165-186 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_881395905 |
source | SpringerLink Journals |
subjects | Applied sciences Buildings. Public works Classical Mechanics Complex Systems Exact sciences and technology Fluid dynamics Fluid- and Aerodynamics Fundamental areas of phenomenology (including applications) General theory Hydraulic constructions Mathematical and Computational Physics Partial differential equations Physics Physics and Astronomy Theoretical |
title | The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hydrodynamical%20Relevance%20of%20the%20Camassa%E2%80%93Holm%20and%20Degasperis%E2%80%93Procesi%20Equations&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Constantin,%20Adrian&rft.date=2009-04-01&rft.volume=192&rft.issue=1&rft.spage=165&rft.epage=186&rft.pages=165-186&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-008-0128-2&rft_dat=%3Cproquest_cross%3E2418734701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881395905&rft_id=info:pmid/&rfr_iscdi=true |