The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations

In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2009-04, Vol.192 (1), p.165-186
Hauptverfasser: Constantin, Adrian, Lannes, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 165
container_title Archive for rational mechanics and analysis
container_volume 192
creator Constantin, Adrian
Lannes, David
description In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.
doi_str_mv 10.1007/s00205-008-0128-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881395905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418734701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G4QXEZvksn8LKVWKxQUadfhmmTqlJlJm7RCd76Db-iTmDJFV64uufeck8NHyCWDGwaQ3wYADpICFBQYLyg_IgOWCk4hy8UxGQCAoKXk-Sk5C2G5f3KRDch89m6Tyc54Z3YdtrXGJnm1jf3ATtvEVckm3kfYYgj4_fk1cU2bYGeSe7vAsLK-DnH74p22oU7G6y1uateFc3JSYRPsxWEOyfxhPBtN6PT58Wl0N6U6lemG6lwLhtxIo99in0IbazmILNdGCtCQS5miKa22qKssWipELMocOEomDRNDctXnrrxbb23YqKXb-i5-qYqCiVKWIKOI9SLtXQjeVmrl6xb9TjFQe3iqh6ciPLWHp3j0XB-CMUQklY846vBr5IzFAgyijve6EE_dwvq_Av-H_wB7DYC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881395905</pqid></control><display><type>article</type><title>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</title><source>SpringerLink Journals</source><creator>Constantin, Adrian ; Lannes, David</creator><creatorcontrib>Constantin, Adrian ; Lannes, David</creatorcontrib><description>In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-008-0128-2</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Buildings. Public works ; Classical Mechanics ; Complex Systems ; Exact sciences and technology ; Fluid dynamics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Hydraulic constructions ; Mathematical and Computational Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2009-04, Vol.192 (1), p.165-186</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</citedby><cites>FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-008-0128-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-008-0128-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21151510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Lannes, David</creatorcontrib><title>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Hydraulic constructions</subject><subject>Mathematical and Computational Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4G4QXEZvksn8LKVWKxQUadfhmmTqlJlJm7RCd76Db-iTmDJFV64uufeck8NHyCWDGwaQ3wYADpICFBQYLyg_IgOWCk4hy8UxGQCAoKXk-Sk5C2G5f3KRDch89m6Tyc54Z3YdtrXGJnm1jf3ATtvEVckm3kfYYgj4_fk1cU2bYGeSe7vAsLK-DnH74p22oU7G6y1uateFc3JSYRPsxWEOyfxhPBtN6PT58Wl0N6U6lemG6lwLhtxIo99in0IbazmILNdGCtCQS5miKa22qKssWipELMocOEomDRNDctXnrrxbb23YqKXb-i5-qYqCiVKWIKOI9SLtXQjeVmrl6xb9TjFQe3iqh6ciPLWHp3j0XB-CMUQklY846vBr5IzFAgyijve6EE_dwvq_Av-H_wB7DYC8</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Constantin, Adrian</creator><creator>Lannes, David</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090401</creationdate><title>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</title><author>Constantin, Adrian ; Lannes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-c7c31a2d5dcb0328cdee20367cd530c07554ad9eceacf6454faaa89702a515d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Hydraulic constructions</topic><topic>Mathematical and Computational Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Lannes, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Adrian</au><au>Lannes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>192</volume><issue>1</issue><spage>165</spage><epage>186</epage><pages>165-186</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-008-0128-2</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2009-04, Vol.192 (1), p.165-186
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881395905
source SpringerLink Journals
subjects Applied sciences
Buildings. Public works
Classical Mechanics
Complex Systems
Exact sciences and technology
Fluid dynamics
Fluid- and Aerodynamics
Fundamental areas of phenomenology (including applications)
General theory
Hydraulic constructions
Mathematical and Computational Physics
Partial differential equations
Physics
Physics and Astronomy
Theoretical
title The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hydrodynamical%20Relevance%20of%20the%20Camassa%E2%80%93Holm%20and%20Degasperis%E2%80%93Procesi%20Equations&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Constantin,%20Adrian&rft.date=2009-04-01&rft.volume=192&rft.issue=1&rft.spage=165&rft.epage=186&rft.pages=165-186&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-008-0128-2&rft_dat=%3Cproquest_cross%3E2418734701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881395905&rft_id=info:pmid/&rfr_iscdi=true