Comparison of Monte Carlo Simulations of Cytochrome b^sub 6^f with Experiment Using Latin Hypercube Sampling

We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b^sub 6^f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Cro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2011-09, Vol.73 (9), p.2152
Hauptverfasser: Schumaker, Mark F, Kramer, David M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 2152
container_title Bulletin of mathematical biology
container_volume 73
creator Schumaker, Mark F
Kramer, David M
description We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b^sub 6^f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Crofts (Biochim. Biophys. Acta 1183:72-84, 1993). Rates for the simulation were optimized by constructing large numbers of parameter sets using Latin hypercube sampling and selecting those that gave the minimum mean square deviation from experiment. Multiple copies of the simulation program were run in parallel on a Beowulf cluster. We found that Latin hypercube sampling works well as a method for approximately optimizing very noisy objective functions of 15 or 22 variables. Further, the simplified Q-cycle model can reproduce experimental results in the presence or absence of a quinone reductase (Q^sub i^) site inhibitor without invoking ad hoc side-reactions.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11538-010-9616-2
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_880753665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415443381</sourcerecordid><originalsourceid>FETCH-proquest_journals_8807536653</originalsourceid><addsrcrecordid>eNqNi8tOwzAURC0EEqHlA9hdsTdcOyRN1lFRF7AqbFs5lUNd2b7BD0H_HiPxAaxGM2cOY3cCHwTi6jEK0dQdR4G8b0XL5QWrRCNlaSgvWYXYS97JJ7xmNzGesDh93VfMDuRmFUwkDzTBK_mkYVDBEmyNy1YlQz7-ouGc6HAM5DSMu5hHaHcTfJl0hPX3rINx2id4j8Z_wEuxPGzOZT7kUcNWudkWsGRXk7JR3_7lgt0_r9-GDZ8DfWYd0_5EOfiC9l2Hq6Zu26b-1-kHMSlPUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880753665</pqid></control><display><type>article</type><title>Comparison of Monte Carlo Simulations of Cytochrome b^sub 6^f with Experiment Using Latin Hypercube Sampling</title><source>SpringerLink Journals</source><creator>Schumaker, Mark F ; Kramer, David M</creator><creatorcontrib>Schumaker, Mark F ; Kramer, David M</creatorcontrib><description>We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b^sub 6^f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Crofts (Biochim. Biophys. Acta 1183:72-84, 1993). Rates for the simulation were optimized by constructing large numbers of parameter sets using Latin hypercube sampling and selecting those that gave the minimum mean square deviation from experiment. Multiple copies of the simulation program were run in parallel on a Beowulf cluster. We found that Latin hypercube sampling works well as a method for approximately optimizing very noisy objective functions of 15 or 22 variables. Further, the simplified Q-cycle model can reproduce experimental results in the presence or absence of a quinone reductase (Q^sub i^) site inhibitor without invoking ad hoc side-reactions.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-010-9616-2</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><ispartof>Bulletin of mathematical biology, 2011-09, Vol.73 (9), p.2152</ispartof><rights>Society for Mathematical Biology 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schumaker, Mark F</creatorcontrib><creatorcontrib>Kramer, David M</creatorcontrib><title>Comparison of Monte Carlo Simulations of Cytochrome b^sub 6^f with Experiment Using Latin Hypercube Sampling</title><title>Bulletin of mathematical biology</title><description>We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b^sub 6^f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Crofts (Biochim. Biophys. Acta 1183:72-84, 1993). Rates for the simulation were optimized by constructing large numbers of parameter sets using Latin hypercube sampling and selecting those that gave the minimum mean square deviation from experiment. Multiple copies of the simulation program were run in parallel on a Beowulf cluster. We found that Latin hypercube sampling works well as a method for approximately optimizing very noisy objective functions of 15 or 22 variables. Further, the simplified Q-cycle model can reproduce experimental results in the presence or absence of a quinone reductase (Q^sub i^) site inhibitor without invoking ad hoc side-reactions.[PUBLICATION ABSTRACT]</description><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNi8tOwzAURC0EEqHlA9hdsTdcOyRN1lFRF7AqbFs5lUNd2b7BD0H_HiPxAaxGM2cOY3cCHwTi6jEK0dQdR4G8b0XL5QWrRCNlaSgvWYXYS97JJ7xmNzGesDh93VfMDuRmFUwkDzTBK_mkYVDBEmyNy1YlQz7-ouGc6HAM5DSMu5hHaHcTfJl0hPX3rINx2id4j8Z_wEuxPGzOZT7kUcNWudkWsGRXk7JR3_7lgt0_r9-GDZ8DfWYd0_5EOfiC9l2Hq6Zu26b-1-kHMSlPUg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Schumaker, Mark F</creator><creator>Kramer, David M</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110901</creationdate><title>Comparison of Monte Carlo Simulations of Cytochrome b^sub 6^f with Experiment Using Latin Hypercube Sampling</title><author>Schumaker, Mark F ; Kramer, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_8807536653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumaker, Mark F</creatorcontrib><creatorcontrib>Kramer, David M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumaker, Mark F</au><au>Kramer, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Monte Carlo Simulations of Cytochrome b^sub 6^f with Experiment Using Latin Hypercube Sampling</atitle><jtitle>Bulletin of mathematical biology</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>73</volume><issue>9</issue><spage>2152</spage><pages>2152-</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b^sub 6^f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Crofts (Biochim. Biophys. Acta 1183:72-84, 1993). Rates for the simulation were optimized by constructing large numbers of parameter sets using Latin hypercube sampling and selecting those that gave the minimum mean square deviation from experiment. Multiple copies of the simulation program were run in parallel on a Beowulf cluster. We found that Latin hypercube sampling works well as a method for approximately optimizing very noisy objective functions of 15 or 22 variables. Further, the simplified Q-cycle model can reproduce experimental results in the presence or absence of a quinone reductase (Q^sub i^) site inhibitor without invoking ad hoc side-reactions.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11538-010-9616-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2011-09, Vol.73 (9), p.2152
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_journals_880753665
source SpringerLink Journals
title Comparison of Monte Carlo Simulations of Cytochrome b^sub 6^f with Experiment Using Latin Hypercube Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Monte%20Carlo%20Simulations%20of%20Cytochrome%20b%5Esub%206%5Ef%20with%20Experiment%20Using%20Latin%20Hypercube%20Sampling&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Schumaker,%20Mark%20F&rft.date=2011-09-01&rft.volume=73&rft.issue=9&rft.spage=2152&rft.pages=2152-&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-010-9616-2&rft_dat=%3Cproquest%3E2415443381%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880753665&rft_id=info:pmid/&rfr_iscdi=true