Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach
Off-road autonomous navigation is one of the most difficult automation challenges from the point of view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical lack of prior information. This paper describes an autonomous navigation software sys...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 1998-01, Vol.5 (2), p.163-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | Autonomous robots |
container_volume | 5 |
creator | Alonzo, Kelly Stentz, Anthony |
description | Off-road autonomous navigation is one of the most difficult automation challenges from the point of view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on several vehicle testbeds including autonomous HMMWV's and planetary rover prototypes. To date, it has achieved speeds of 15 km/hr and excursions of 15 km.We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain mapping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories expressed in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an optimal control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity models stabilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes. An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelligence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some environmental mapping as do deliberative AI planners, yet it also emphasizes the real-time aspects of the problem as do minimalist reactive architectures. |
doi_str_mv | 10.1023/A:1008822205706 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_879451430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408822851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-3e9d02ba103721d6ce90b341bff70d90b1cc72a39f0181d95078c78ee1493b3f3</originalsourceid><addsrcrecordid>eNotjUFLwzAcxYMoWKdnr8Gz1X-Spkl2K8OpMHHIFDyNNE1dRm1mkgre_BB-Qj-JhXl6j8eP90PonMAVAcquqykBkJJSClxAeYAywgXLBafiEGWgqMo5V-wYncS4BQAlADL0-uSHtw1e2RC063E1JN_7dz9E_OBr17n09fv9s9QhYTrF1QiY5D4tfnHR-f4SL4Nt3H6a-T4F3-Fqtwtem80pOmp1F-3Zf07Q8_xmNbvLF4-397NqkRtKy5QzqxqgtSbABCVNaayCmhWkblsBzdiJMYJqplogkjSKg5BGSGtJoVjNWjZBF_vfUfsx2JjWWz-EflSupVAFJwUD9geKjVPn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879451430</pqid></control><display><type>article</type><title>Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Alonzo, Kelly ; Stentz, Anthony</creator><creatorcontrib>Alonzo, Kelly ; Stentz, Anthony</creatorcontrib><description>Off-road autonomous navigation is one of the most difficult automation challenges from the point of view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on several vehicle testbeds including autonomous HMMWV's and planetary rover prototypes. To date, it has achieved speeds of 15 km/hr and excursions of 15 km.We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain mapping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories expressed in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an optimal control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity models stabilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes. An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelligence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some environmental mapping as do deliberative AI planners, yet it also emphasizes the real-time aspects of the problem as do minimalist reactive architectures.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1023/A:1008822205706</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Active control ; Algorithms ; Arbitration ; Artificial intelligence ; Automobiles ; Autonomous navigation ; Hazards ; Imagery ; Obstacle avoidance ; Optimal control ; Predictive control ; Rough terrain ; Servocontrol ; Studies ; Terrain mapping ; Trajectory control</subject><ispartof>Autonomous robots, 1998-01, Vol.5 (2), p.163-198</ispartof><rights>Autonomous Robots is a copyright of Springer, (1998). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-3e9d02ba103721d6ce90b341bff70d90b1cc72a39f0181d95078c78ee1493b3f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alonzo, Kelly</creatorcontrib><creatorcontrib>Stentz, Anthony</creatorcontrib><title>Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach</title><title>Autonomous robots</title><description>Off-road autonomous navigation is one of the most difficult automation challenges from the point of view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on several vehicle testbeds including autonomous HMMWV's and planetary rover prototypes. To date, it has achieved speeds of 15 km/hr and excursions of 15 km.We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain mapping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories expressed in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an optimal control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity models stabilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes. An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelligence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some environmental mapping as do deliberative AI planners, yet it also emphasizes the real-time aspects of the problem as do minimalist reactive architectures.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Arbitration</subject><subject>Artificial intelligence</subject><subject>Automobiles</subject><subject>Autonomous navigation</subject><subject>Hazards</subject><subject>Imagery</subject><subject>Obstacle avoidance</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Rough terrain</subject><subject>Servocontrol</subject><subject>Studies</subject><subject>Terrain mapping</subject><subject>Trajectory control</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotjUFLwzAcxYMoWKdnr8Gz1X-Spkl2K8OpMHHIFDyNNE1dRm1mkgre_BB-Qj-JhXl6j8eP90PonMAVAcquqykBkJJSClxAeYAywgXLBafiEGWgqMo5V-wYncS4BQAlADL0-uSHtw1e2RC063E1JN_7dz9E_OBr17n09fv9s9QhYTrF1QiY5D4tfnHR-f4SL4Nt3H6a-T4F3-Fqtwtem80pOmp1F-3Zf07Q8_xmNbvLF4-397NqkRtKy5QzqxqgtSbABCVNaayCmhWkblsBzdiJMYJqplogkjSKg5BGSGtJoVjNWjZBF_vfUfsx2JjWWz-EflSupVAFJwUD9geKjVPn</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Alonzo, Kelly</creator><creator>Stentz, Anthony</creator><general>Springer Nature B.V</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>19980101</creationdate><title>Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach</title><author>Alonzo, Kelly ; Stentz, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-3e9d02ba103721d6ce90b341bff70d90b1cc72a39f0181d95078c78ee1493b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Arbitration</topic><topic>Artificial intelligence</topic><topic>Automobiles</topic><topic>Autonomous navigation</topic><topic>Hazards</topic><topic>Imagery</topic><topic>Obstacle avoidance</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Rough terrain</topic><topic>Servocontrol</topic><topic>Studies</topic><topic>Terrain mapping</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonzo, Kelly</creatorcontrib><creatorcontrib>Stentz, Anthony</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonzo, Kelly</au><au>Stentz, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach</atitle><jtitle>Autonomous robots</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>5</volume><issue>2</issue><spage>163</spage><epage>198</epage><pages>163-198</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Off-road autonomous navigation is one of the most difficult automation challenges from the point of view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on several vehicle testbeds including autonomous HMMWV's and planetary rover prototypes. To date, it has achieved speeds of 15 km/hr and excursions of 15 km.We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain mapping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories expressed in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an optimal control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity models stabilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes. An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelligence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some environmental mapping as do deliberative AI planners, yet it also emphasizes the real-time aspects of the problem as do minimalist reactive architectures.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008822205706</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 1998-01, Vol.5 (2), p.163-198 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_journals_879451430 |
source | Springer Nature - Complete Springer Journals |
subjects | Active control Algorithms Arbitration Artificial intelligence Automobiles Autonomous navigation Hazards Imagery Obstacle avoidance Optimal control Predictive control Rough terrain Servocontrol Studies Terrain mapping Trajectory control |
title | Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rough%20Terrain%20Autonomous%20Mobility%E2%80%94Part%202:%20An%20Active%20Vision,%20Predictive%20Control%20Approach&rft.jtitle=Autonomous%20robots&rft.au=Alonzo,%20Kelly&rft.date=1998-01-01&rft.volume=5&rft.issue=2&rft.spage=163&rft.epage=198&rft.pages=163-198&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1023/A:1008822205706&rft_dat=%3Cproquest%3E2408822851%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879451430&rft_id=info:pmid/&rfr_iscdi=true |